Metamath Proof Explorer


Theorem gonar

Description: If the "Godel-set of NAND" applied to classes is a Godel formula, the classes are also Godel formulas. Remark: The reverse is not valid for A or B being of the same height as the "Godel-set of NAND". (Contributed by AV, 21-Oct-2023)

Ref Expression
Assertion gonar Nωa𝑔bFmlaNaFmlaNbFmlaN

Proof

Step Hyp Ref Expression
1 gonan0 a𝑔bFmlaNN
2 1 adantl Nωa𝑔bFmlaNN
3 nnsuc NωNxωN=sucx
4 suceq d=sucd=suc
5 4 fveq2d d=Fmlasucd=Fmlasuc
6 5 eleq2d d=a𝑔bFmlasucda𝑔bFmlasuc
7 5 eleq2d d=aFmlasucdaFmlasuc
8 5 eleq2d d=bFmlasucdbFmlasuc
9 7 8 anbi12d d=aFmlasucdbFmlasucdaFmlasucbFmlasuc
10 6 9 imbi12d d=a𝑔bFmlasucdaFmlasucdbFmlasucda𝑔bFmlasucaFmlasucbFmlasuc
11 suceq d=csucd=succ
12 11 fveq2d d=cFmlasucd=Fmlasucc
13 12 eleq2d d=ca𝑔bFmlasucda𝑔bFmlasucc
14 12 eleq2d d=caFmlasucdaFmlasucc
15 12 eleq2d d=cbFmlasucdbFmlasucc
16 14 15 anbi12d d=caFmlasucdbFmlasucdaFmlasuccbFmlasucc
17 13 16 imbi12d d=ca𝑔bFmlasucdaFmlasucdbFmlasucda𝑔bFmlasuccaFmlasuccbFmlasucc
18 suceq d=succsucd=sucsucc
19 18 fveq2d d=succFmlasucd=Fmlasucsucc
20 19 eleq2d d=succa𝑔bFmlasucda𝑔bFmlasucsucc
21 19 eleq2d d=succaFmlasucdaFmlasucsucc
22 19 eleq2d d=succbFmlasucdbFmlasucsucc
23 21 22 anbi12d d=succaFmlasucdbFmlasucdaFmlasucsuccbFmlasucsucc
24 20 23 imbi12d d=succa𝑔bFmlasucdaFmlasucdbFmlasucda𝑔bFmlasucsuccaFmlasucsuccbFmlasucsucc
25 suceq d=xsucd=sucx
26 25 fveq2d d=xFmlasucd=Fmlasucx
27 26 eleq2d d=xa𝑔bFmlasucda𝑔bFmlasucx
28 26 eleq2d d=xaFmlasucdaFmlasucx
29 26 eleq2d d=xbFmlasucdbFmlasucx
30 28 29 anbi12d d=xaFmlasucdbFmlasucdaFmlasucxbFmlasucx
31 27 30 imbi12d d=xa𝑔bFmlasucdaFmlasucdbFmlasucda𝑔bFmlasucxaFmlasucxbFmlasucx
32 peano1 ω
33 ovex a𝑔bV
34 isfmlasuc ωa𝑔bVa𝑔bFmlasuca𝑔bFmlauFmlavFmlaa𝑔b=u𝑔viωa𝑔b=𝑔iu
35 32 33 34 mp2an a𝑔bFmlasuca𝑔bFmlauFmlavFmlaa𝑔b=u𝑔viωa𝑔b=𝑔iu
36 eqeq1 x=a𝑔bx=i𝑔ja𝑔b=i𝑔j
37 36 2rexbidv x=a𝑔biωjωx=i𝑔jiωjωa𝑔b=i𝑔j
38 fmla0 Fmla=xV|iωjωx=i𝑔j
39 37 38 elrab2 a𝑔bFmlaa𝑔bViωjωa𝑔b=i𝑔j
40 gonafv aVbVa𝑔b=1𝑜ab
41 40 el2v a𝑔b=1𝑜ab
42 41 a1i iωjωa𝑔b=1𝑜ab
43 goel iωjωi𝑔j=ij
44 42 43 eqeq12d iωjωa𝑔b=i𝑔j1𝑜ab=ij
45 1oex 1𝑜V
46 opex abV
47 45 46 opth 1𝑜ab=ij1𝑜=ab=ij
48 1n0 1𝑜
49 eqneqall 1𝑜=1𝑜aFmlasucbFmlasuc
50 48 49 mpi 1𝑜=aFmlasucbFmlasuc
51 50 adantr 1𝑜=ab=ijaFmlasucbFmlasuc
52 47 51 sylbi 1𝑜ab=ijaFmlasucbFmlasuc
53 44 52 syl6bi iωjωa𝑔b=i𝑔jaFmlasucbFmlasuc
54 53 rexlimdva iωjωa𝑔b=i𝑔jaFmlasucbFmlasuc
55 54 rexlimiv iωjωa𝑔b=i𝑔jaFmlasucbFmlasuc
56 55 adantl a𝑔bViωjωa𝑔b=i𝑔jaFmlasucbFmlasuc
57 39 56 sylbi a𝑔bFmlaaFmlasucbFmlasuc
58 41 a1i uFmlavFmlaa𝑔b=1𝑜ab
59 gonafv uFmlavFmlau𝑔v=1𝑜uv
60 58 59 eqeq12d uFmlavFmlaa𝑔b=u𝑔v1𝑜ab=1𝑜uv
61 45 46 opth 1𝑜ab=1𝑜uv1𝑜=1𝑜ab=uv
62 vex aV
63 vex bV
64 62 63 opth ab=uva=ub=v
65 simpl a=ub=va=u
66 65 equcomd a=ub=vu=a
67 66 eleq1d a=ub=vuFmlaaFmla
68 simpr a=ub=vb=v
69 68 equcomd a=ub=vv=b
70 69 eleq1d a=ub=vvFmlabFmla
71 67 70 anbi12d a=ub=vuFmlavFmlaaFmlabFmla
72 64 71 sylbi ab=uvuFmlavFmlaaFmlabFmla
73 72 adantl 1𝑜=1𝑜ab=uvuFmlavFmlaaFmlabFmla
74 61 73 sylbi 1𝑜ab=1𝑜uvuFmlavFmlaaFmlabFmla
75 fmlasssuc ωFmlaFmlasuc
76 32 75 ax-mp FmlaFmlasuc
77 76 sseli aFmlaaFmlasuc
78 76 sseli bFmlabFmlasuc
79 77 78 anim12i aFmlabFmlaaFmlasucbFmlasuc
80 74 79 syl6bi 1𝑜ab=1𝑜uvuFmlavFmlaaFmlasucbFmlasuc
81 80 com12 uFmlavFmla1𝑜ab=1𝑜uvaFmlasucbFmlasuc
82 60 81 sylbid uFmlavFmlaa𝑔b=u𝑔vaFmlasucbFmlasuc
83 82 rexlimdva uFmlavFmlaa𝑔b=u𝑔vaFmlasucbFmlasuc
84 gonanegoal a𝑔b𝑔iu
85 eqneqall a𝑔b=𝑔iua𝑔b𝑔iuaFmlasucbFmlasuc
86 84 85 mpi a𝑔b=𝑔iuaFmlasucbFmlasuc
87 86 a1i uFmlaiωa𝑔b=𝑔iuaFmlasucbFmlasuc
88 87 rexlimdva uFmlaiωa𝑔b=𝑔iuaFmlasucbFmlasuc
89 83 88 jaod uFmlavFmlaa𝑔b=u𝑔viωa𝑔b=𝑔iuaFmlasucbFmlasuc
90 89 rexlimiv uFmlavFmlaa𝑔b=u𝑔viωa𝑔b=𝑔iuaFmlasucbFmlasuc
91 57 90 jaoi a𝑔bFmlauFmlavFmlaa𝑔b=u𝑔viωa𝑔b=𝑔iuaFmlasucbFmlasuc
92 35 91 sylbi a𝑔bFmlasucaFmlasucbFmlasuc
93 gonarlem cωa𝑔bFmlasuccaFmlasuccbFmlasucca𝑔bFmlasucsuccaFmlasucsuccbFmlasucsucc
94 10 17 24 31 92 93 finds xωa𝑔bFmlasucxaFmlasucxbFmlasucx
95 94 adantr xωN=sucxa𝑔bFmlasucxaFmlasucxbFmlasucx
96 fveq2 N=sucxFmlaN=Fmlasucx
97 96 eleq2d N=sucxa𝑔bFmlaNa𝑔bFmlasucx
98 96 eleq2d N=sucxaFmlaNaFmlasucx
99 96 eleq2d N=sucxbFmlaNbFmlasucx
100 98 99 anbi12d N=sucxaFmlaNbFmlaNaFmlasucxbFmlasucx
101 97 100 imbi12d N=sucxa𝑔bFmlaNaFmlaNbFmlaNa𝑔bFmlasucxaFmlasucxbFmlasucx
102 101 adantl xωN=sucxa𝑔bFmlaNaFmlaNbFmlaNa𝑔bFmlasucxaFmlasucxbFmlasucx
103 95 102 mpbird xωN=sucxa𝑔bFmlaNaFmlaNbFmlaN
104 103 rexlimiva xωN=sucxa𝑔bFmlaNaFmlaNbFmlaN
105 3 104 syl NωNa𝑔bFmlaNaFmlaNbFmlaN
106 105 impancom Nωa𝑔bFmlaNNaFmlaNbFmlaN
107 2 106 mpd Nωa𝑔bFmlaNaFmlaNbFmlaN