Metamath Proof Explorer


Theorem grlimgredgex

Description: Local isomorphisms between simple pseudographs map an edge onto an edge with an endpoint being the image of one of the endpoints of the first edge under the local isomorphism. (Contributed by AV, 28-Dec-2025)

Ref Expression
Hypotheses grlimgredgex.i I = Edg G
grlimgredgex.e E = Edg H
grlimgredgex.v V = Vtx H
grlimgredgex.a φ A X
grlimgredgex.b φ B Y
grlimgredgex.p φ A B I
grlimgredgex.g φ G USHGraph
grlimgredgex.h φ H USHGraph
grlimgredgex.f φ F G GraphLocIso H
Assertion grlimgredgex φ v V F A v E

Proof

Step Hyp Ref Expression
1 grlimgredgex.i I = Edg G
2 grlimgredgex.e E = Edg H
3 grlimgredgex.v V = Vtx H
4 grlimgredgex.a φ A X
5 grlimgredgex.b φ B Y
6 grlimgredgex.p φ A B I
7 grlimgredgex.g φ G USHGraph
8 grlimgredgex.h φ H USHGraph
9 grlimgredgex.f φ F G GraphLocIso H
10 eqid G ClNeighbVtx A = G ClNeighbVtx A
11 eqid x I | x G ClNeighbVtx A = x I | x G ClNeighbVtx A
12 eqid H ClNeighbVtx F A = H ClNeighbVtx F A
13 eqid x E | x H ClNeighbVtx F A = x E | x H ClNeighbVtx F A
14 10 1 11 12 2 13 grlimprclnbgrvtx G USHGraph H USHGraph F G GraphLocIso H A X B Y A B I f f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A
15 7 8 9 4 5 6 14 syl213anc φ f f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A
16 f1of f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A f : G ClNeighbVtx A H ClNeighbVtx F A
17 16 adantl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A f : G ClNeighbVtx A H ClNeighbVtx F A
18 uspgrupgr G USHGraph G UPGraph
19 7 18 syl φ G UPGraph
20 4 5 jca φ A X B Y
21 19 20 6 3jca φ G UPGraph A X B Y A B I
22 eqid Vtx G = Vtx G
23 22 1 upgrpredgv G UPGraph A X B Y A B I A Vtx G B Vtx G
24 simpr A Vtx G B Vtx G B Vtx G
25 21 23 24 3syl φ B Vtx G
26 simpl A Vtx G B Vtx G A Vtx G
27 21 23 26 3syl φ A Vtx G
28 22 1 predgclnbgrel B Vtx G A Vtx G A B I B G ClNeighbVtx A
29 25 27 6 28 syl3anc φ B G ClNeighbVtx A
30 29 adantr φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A B G ClNeighbVtx A
31 17 30 ffvelcdmd φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A f B H ClNeighbVtx F A
32 3 clnbgrisvtx f B H ClNeighbVtx F A f B V
33 31 32 syl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A f B V
34 33 adantr φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A f B V
35 preq2 v = f B F A v = F A f B
36 35 eleq1d v = f B F A v E F A f B E
37 36 adantl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A v = f B F A v E F A f B E
38 sseq1 x = F A f B x H ClNeighbVtx F A F A f B H ClNeighbVtx F A
39 38 elrab F A f B x E | x H ClNeighbVtx F A F A f B E F A f B H ClNeighbVtx F A
40 39 simplbi F A f B x E | x H ClNeighbVtx F A F A f B E
41 40 adantl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A F A f B E
42 34 37 41 rspcedvd φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A v V F A v E
43 42 ex φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A v V F A v E
44 22 clnbgrvtxel A Vtx G A G ClNeighbVtx A
45 27 44 syl φ A G ClNeighbVtx A
46 45 adantr φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A A G ClNeighbVtx A
47 17 46 ffvelcdmd φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A f A H ClNeighbVtx F A
48 3 clnbgrisvtx f A H ClNeighbVtx F A f A V
49 47 48 syl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A f A V
50 49 adantr φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A f A V
51 preq2 v = f A F A v = F A f A
52 51 eleq1d v = f A F A v E F A f A E
53 52 adantl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A v = f A F A v E F A f A E
54 sseq1 x = F A f A x H ClNeighbVtx F A F A f A H ClNeighbVtx F A
55 54 elrab F A f A x E | x H ClNeighbVtx F A F A f A E F A f A H ClNeighbVtx F A
56 55 simplbi F A f A x E | x H ClNeighbVtx F A F A f A E
57 56 adantl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A F A f A E
58 50 53 57 rspcedvd φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A v V F A v E
59 58 ex φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A v V F A v E
60 43 59 jaod φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A v V F A v E
61 60 expimpd φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A v V F A v E
62 61 exlimdv φ f f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A v V F A v E
63 15 62 mpd φ v V F A v E