Metamath Proof Explorer


Theorem grpinvssd

Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019)

Ref Expression
Hypotheses grpidssd.m φ M Grp
grpidssd.s φ S Grp
grpidssd.b B = Base S
grpidssd.c φ B Base M
grpidssd.o φ x B y B x + M y = x + S y
Assertion grpinvssd φ X B inv g S X = inv g M X

Proof

Step Hyp Ref Expression
1 grpidssd.m φ M Grp
2 grpidssd.s φ S Grp
3 grpidssd.b B = Base S
4 grpidssd.c φ B Base M
5 grpidssd.o φ x B y B x + M y = x + S y
6 eqid inv g S = inv g S
7 3 6 grpinvcl S Grp X B inv g S X B
8 2 7 sylan φ X B inv g S X B
9 simpr φ X B X B
10 5 adantr φ X B x B y B x + M y = x + S y
11 oveq1 x = inv g S X x + M y = inv g S X + M y
12 oveq1 x = inv g S X x + S y = inv g S X + S y
13 11 12 eqeq12d x = inv g S X x + M y = x + S y inv g S X + M y = inv g S X + S y
14 oveq2 y = X inv g S X + M y = inv g S X + M X
15 oveq2 y = X inv g S X + S y = inv g S X + S X
16 14 15 eqeq12d y = X inv g S X + M y = inv g S X + S y inv g S X + M X = inv g S X + S X
17 13 16 rspc2va inv g S X B X B x B y B x + M y = x + S y inv g S X + M X = inv g S X + S X
18 8 9 10 17 syl21anc φ X B inv g S X + M X = inv g S X + S X
19 eqid + S = + S
20 eqid 0 S = 0 S
21 3 19 20 6 grplinv S Grp X B inv g S X + S X = 0 S
22 2 21 sylan φ X B inv g S X + S X = 0 S
23 4 sselda φ X B X Base M
24 eqid Base M = Base M
25 eqid + M = + M
26 eqid 0 M = 0 M
27 eqid inv g M = inv g M
28 24 25 26 27 grplinv M Grp X Base M inv g M X + M X = 0 M
29 1 23 28 syl2an2r φ X B inv g M X + M X = 0 M
30 1 2 3 4 5 grpidssd φ 0 M = 0 S
31 30 adantr φ X B 0 M = 0 S
32 29 31 eqtr2d φ X B 0 S = inv g M X + M X
33 18 22 32 3eqtrd φ X B inv g S X + M X = inv g M X + M X
34 1 adantr φ X B M Grp
35 4 adantr φ X B B Base M
36 35 8 sseldd φ X B inv g S X Base M
37 24 27 grpinvcl M Grp X Base M inv g M X Base M
38 1 23 37 syl2an2r φ X B inv g M X Base M
39 24 25 grprcan M Grp inv g S X Base M inv g M X Base M X Base M inv g S X + M X = inv g M X + M X inv g S X = inv g M X
40 34 36 38 23 39 syl13anc φ X B inv g S X + M X = inv g M X + M X inv g S X = inv g M X
41 33 40 mpbid φ X B inv g S X = inv g M X
42 41 ex φ X B inv g S X = inv g M X