Metamath Proof Explorer


Theorem grpinvssd

Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019)

Ref Expression
Hypotheses grpidssd.m φMGrp
grpidssd.s φSGrp
grpidssd.b B=BaseS
grpidssd.c φBBaseM
grpidssd.o φxByBx+My=x+Sy
Assertion grpinvssd φXBinvgSX=invgMX

Proof

Step Hyp Ref Expression
1 grpidssd.m φMGrp
2 grpidssd.s φSGrp
3 grpidssd.b B=BaseS
4 grpidssd.c φBBaseM
5 grpidssd.o φxByBx+My=x+Sy
6 eqid invgS=invgS
7 3 6 grpinvcl SGrpXBinvgSXB
8 2 7 sylan φXBinvgSXB
9 simpr φXBXB
10 5 adantr φXBxByBx+My=x+Sy
11 oveq1 x=invgSXx+My=invgSX+My
12 oveq1 x=invgSXx+Sy=invgSX+Sy
13 11 12 eqeq12d x=invgSXx+My=x+SyinvgSX+My=invgSX+Sy
14 oveq2 y=XinvgSX+My=invgSX+MX
15 oveq2 y=XinvgSX+Sy=invgSX+SX
16 14 15 eqeq12d y=XinvgSX+My=invgSX+SyinvgSX+MX=invgSX+SX
17 13 16 rspc2va invgSXBXBxByBx+My=x+SyinvgSX+MX=invgSX+SX
18 8 9 10 17 syl21anc φXBinvgSX+MX=invgSX+SX
19 eqid +S=+S
20 eqid 0S=0S
21 3 19 20 6 grplinv SGrpXBinvgSX+SX=0S
22 2 21 sylan φXBinvgSX+SX=0S
23 4 sselda φXBXBaseM
24 eqid BaseM=BaseM
25 eqid +M=+M
26 eqid 0M=0M
27 eqid invgM=invgM
28 24 25 26 27 grplinv MGrpXBaseMinvgMX+MX=0M
29 1 23 28 syl2an2r φXBinvgMX+MX=0M
30 1 2 3 4 5 grpidssd φ0M=0S
31 30 adantr φXB0M=0S
32 29 31 eqtr2d φXB0S=invgMX+MX
33 18 22 32 3eqtrd φXBinvgSX+MX=invgMX+MX
34 1 adantr φXBMGrp
35 4 adantr φXBBBaseM
36 35 8 sseldd φXBinvgSXBaseM
37 24 27 grpinvcl MGrpXBaseMinvgMXBaseM
38 1 23 37 syl2an2r φXBinvgMXBaseM
39 24 25 grprcan MGrpinvgSXBaseMinvgMXBaseMXBaseMinvgSX+MX=invgMX+MXinvgSX=invgMX
40 34 36 38 23 39 syl13anc φXBinvgSX+MX=invgMX+MXinvgSX=invgMX
41 33 40 mpbid φXBinvgSX=invgMX
42 41 ex φXBinvgSX=invgMX