Step |
Hyp |
Ref |
Expression |
1 |
|
grpidssd.m |
|- ( ph -> M e. Grp ) |
2 |
|
grpidssd.s |
|- ( ph -> S e. Grp ) |
3 |
|
grpidssd.b |
|- B = ( Base ` S ) |
4 |
|
grpidssd.c |
|- ( ph -> B C_ ( Base ` M ) ) |
5 |
|
grpidssd.o |
|- ( ph -> A. x e. B A. y e. B ( x ( +g ` M ) y ) = ( x ( +g ` S ) y ) ) |
6 |
|
eqid |
|- ( invg ` S ) = ( invg ` S ) |
7 |
3 6
|
grpinvcl |
|- ( ( S e. Grp /\ X e. B ) -> ( ( invg ` S ) ` X ) e. B ) |
8 |
2 7
|
sylan |
|- ( ( ph /\ X e. B ) -> ( ( invg ` S ) ` X ) e. B ) |
9 |
|
simpr |
|- ( ( ph /\ X e. B ) -> X e. B ) |
10 |
5
|
adantr |
|- ( ( ph /\ X e. B ) -> A. x e. B A. y e. B ( x ( +g ` M ) y ) = ( x ( +g ` S ) y ) ) |
11 |
|
oveq1 |
|- ( x = ( ( invg ` S ) ` X ) -> ( x ( +g ` M ) y ) = ( ( ( invg ` S ) ` X ) ( +g ` M ) y ) ) |
12 |
|
oveq1 |
|- ( x = ( ( invg ` S ) ` X ) -> ( x ( +g ` S ) y ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) y ) ) |
13 |
11 12
|
eqeq12d |
|- ( x = ( ( invg ` S ) ` X ) -> ( ( x ( +g ` M ) y ) = ( x ( +g ` S ) y ) <-> ( ( ( invg ` S ) ` X ) ( +g ` M ) y ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) y ) ) ) |
14 |
|
oveq2 |
|- ( y = X -> ( ( ( invg ` S ) ` X ) ( +g ` M ) y ) = ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) ) |
15 |
|
oveq2 |
|- ( y = X -> ( ( ( invg ` S ) ` X ) ( +g ` S ) y ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) X ) ) |
16 |
14 15
|
eqeq12d |
|- ( y = X -> ( ( ( ( invg ` S ) ` X ) ( +g ` M ) y ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) y ) <-> ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) X ) ) ) |
17 |
13 16
|
rspc2va |
|- ( ( ( ( ( invg ` S ) ` X ) e. B /\ X e. B ) /\ A. x e. B A. y e. B ( x ( +g ` M ) y ) = ( x ( +g ` S ) y ) ) -> ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) X ) ) |
18 |
8 9 10 17
|
syl21anc |
|- ( ( ph /\ X e. B ) -> ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) X ) ) |
19 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
20 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
21 |
3 19 20 6
|
grplinv |
|- ( ( S e. Grp /\ X e. B ) -> ( ( ( invg ` S ) ` X ) ( +g ` S ) X ) = ( 0g ` S ) ) |
22 |
2 21
|
sylan |
|- ( ( ph /\ X e. B ) -> ( ( ( invg ` S ) ` X ) ( +g ` S ) X ) = ( 0g ` S ) ) |
23 |
4
|
sselda |
|- ( ( ph /\ X e. B ) -> X e. ( Base ` M ) ) |
24 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
25 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
26 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
27 |
|
eqid |
|- ( invg ` M ) = ( invg ` M ) |
28 |
24 25 26 27
|
grplinv |
|- ( ( M e. Grp /\ X e. ( Base ` M ) ) -> ( ( ( invg ` M ) ` X ) ( +g ` M ) X ) = ( 0g ` M ) ) |
29 |
1 23 28
|
syl2an2r |
|- ( ( ph /\ X e. B ) -> ( ( ( invg ` M ) ` X ) ( +g ` M ) X ) = ( 0g ` M ) ) |
30 |
1 2 3 4 5
|
grpidssd |
|- ( ph -> ( 0g ` M ) = ( 0g ` S ) ) |
31 |
30
|
adantr |
|- ( ( ph /\ X e. B ) -> ( 0g ` M ) = ( 0g ` S ) ) |
32 |
29 31
|
eqtr2d |
|- ( ( ph /\ X e. B ) -> ( 0g ` S ) = ( ( ( invg ` M ) ` X ) ( +g ` M ) X ) ) |
33 |
18 22 32
|
3eqtrd |
|- ( ( ph /\ X e. B ) -> ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) = ( ( ( invg ` M ) ` X ) ( +g ` M ) X ) ) |
34 |
1
|
adantr |
|- ( ( ph /\ X e. B ) -> M e. Grp ) |
35 |
4
|
adantr |
|- ( ( ph /\ X e. B ) -> B C_ ( Base ` M ) ) |
36 |
35 8
|
sseldd |
|- ( ( ph /\ X e. B ) -> ( ( invg ` S ) ` X ) e. ( Base ` M ) ) |
37 |
24 27
|
grpinvcl |
|- ( ( M e. Grp /\ X e. ( Base ` M ) ) -> ( ( invg ` M ) ` X ) e. ( Base ` M ) ) |
38 |
1 23 37
|
syl2an2r |
|- ( ( ph /\ X e. B ) -> ( ( invg ` M ) ` X ) e. ( Base ` M ) ) |
39 |
24 25
|
grprcan |
|- ( ( M e. Grp /\ ( ( ( invg ` S ) ` X ) e. ( Base ` M ) /\ ( ( invg ` M ) ` X ) e. ( Base ` M ) /\ X e. ( Base ` M ) ) ) -> ( ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) = ( ( ( invg ` M ) ` X ) ( +g ` M ) X ) <-> ( ( invg ` S ) ` X ) = ( ( invg ` M ) ` X ) ) ) |
40 |
34 36 38 23 39
|
syl13anc |
|- ( ( ph /\ X e. B ) -> ( ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) = ( ( ( invg ` M ) ` X ) ( +g ` M ) X ) <-> ( ( invg ` S ) ` X ) = ( ( invg ` M ) ` X ) ) ) |
41 |
33 40
|
mpbid |
|- ( ( ph /\ X e. B ) -> ( ( invg ` S ) ` X ) = ( ( invg ` M ) ` X ) ) |
42 |
41
|
ex |
|- ( ph -> ( X e. B -> ( ( invg ` S ) ` X ) = ( ( invg ` M ) ` X ) ) ) |