Metamath Proof Explorer


Theorem grpoidinv

Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X=ranG
Assertion grpoidinv GGrpOpuXxXuGx=xxGu=xyXyGx=uxGy=u

Proof

Step Hyp Ref Expression
1 grpfo.1 X=ranG
2 simpl uGz=zwXwGz=uuGz=z
3 2 ralimi zXuGz=zwXwGz=uzXuGz=z
4 oveq2 z=xuGz=uGx
5 id z=xz=x
6 4 5 eqeq12d z=xuGz=zuGx=x
7 6 rspccva zXuGz=zxXuGx=x
8 3 7 sylan zXuGz=zwXwGz=uxXuGx=x
9 8 adantll uXzXuGz=zwXwGz=uxXuGx=x
10 9 adantll GGrpOpuXzXuGz=zwXwGz=uxXuGx=x
11 simpl GGrpOpuXzXuGz=zwXwGz=uGGrpOp
12 11 anim1i GGrpOpuXzXuGz=zwXwGz=uxXGGrpOpxX
13 id GGrpOpuXGGrpOpuX
14 13 adantrr GGrpOpuXzXuGz=zwXwGz=uGGrpOpuX
15 14 adantr GGrpOpuXzXuGz=zwXwGz=uxXGGrpOpuX
16 3 adantl uXzXuGz=zwXwGz=uzXuGz=z
17 16 ad2antlr GGrpOpuXzXuGz=zwXwGz=uxXzXuGz=z
18 simpr uGz=zwXwGz=uwXwGz=u
19 18 ralimi zXuGz=zwXwGz=uzXwXwGz=u
20 19 adantl uXzXuGz=zwXwGz=uzXwXwGz=u
21 20 ad2antlr GGrpOpuXzXuGz=zwXwGz=uxXzXwXwGz=u
22 15 17 21 jca32 GGrpOpuXzXuGz=zwXwGz=uxXGGrpOpuXzXuGz=zzXwXwGz=u
23 biid zXuGz=zzXuGz=z
24 biid zXwXwGz=uzXwXwGz=u
25 1 23 24 grpoidinvlem3 GGrpOpuXzXuGz=zzXwXwGz=uxXyXyGx=uxGy=u
26 22 25 sylancom GGrpOpuXzXuGz=zwXwGz=uxXyXyGx=uxGy=u
27 1 grpoidinvlem4 GGrpOpxXyXyGx=uxGy=uxGu=uGx
28 12 26 27 syl2anc GGrpOpuXzXuGz=zwXwGz=uxXxGu=uGx
29 28 10 eqtrd GGrpOpuXzXuGz=zwXwGz=uxXxGu=x
30 10 29 26 jca31 GGrpOpuXzXuGz=zwXwGz=uxXuGx=xxGu=xyXyGx=uxGy=u
31 30 ralrimiva GGrpOpuXzXuGz=zwXwGz=uxXuGx=xxGu=xyXyGx=uxGy=u
32 1 grpolidinv GGrpOpuXzXuGz=zwXwGz=u
33 31 32 reximddv GGrpOpuXxXuGx=xxGu=xyXyGx=uxGy=u