Metamath Proof Explorer


Theorem gsumbagdiagOLD

Description: Obsolete version of gsumbagdiag as of 6-Aug-2024. (Contributed by Mario Carneiro, 5-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses psrbag.d D=f0I|f-1Fin
psrbagconf1o.s S=yD|yfF
gsumbagdiagOLD.i φIV
gsumbagdiagOLD.f φFD
gsumbagdiagOLD.b B=BaseG
gsumbagdiagOLD.g φGCMnd
gsumbagdiagOLD.x φjSkxD|xfFfjXB
Assertion gsumbagdiagOLD φGjS,kxD|xfFfjX=GkS,jxD|xfFfkX

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 psrbagconf1o.s S=yD|yfF
3 gsumbagdiagOLD.i φIV
4 gsumbagdiagOLD.f φFD
5 gsumbagdiagOLD.b B=BaseG
6 gsumbagdiagOLD.g φGCMnd
7 gsumbagdiagOLD.x φjSkxD|xfFfjXB
8 eqid 0G=0G
9 1 psrbaglefiOLD IVFDyD|yfFFin
10 3 4 9 syl2anc φyD|yfFFin
11 2 10 eqeltrid φSFin
12 ovex 0IV
13 1 12 rab2ex xD|xfFfjV
14 13 a1i φjSxD|xfFfjV
15 xpfi SFinSFinS×SFin
16 11 11 15 syl2anc φS×SFin
17 simprl φjSkxD|xfFfjjS
18 1 2 3 4 gsumbagdiaglemOLD φjSkxD|xfFfjkSjxD|xfFfk
19 18 simpld φjSkxD|xfFfjkS
20 brxp jS×SkjSkS
21 17 19 20 sylanbrc φjSkxD|xfFfjjS×Sk
22 21 pm2.24d φjSkxD|xfFfj¬jS×SkX=0G
23 22 impr φjSkxD|xfFfj¬jS×SkX=0G
24 1 2 3 4 gsumbagdiaglemOLD φkSjxD|xfFfkjSkxD|xfFfj
25 18 24 impbida φjSkxD|xfFfjkSjxD|xfFfk
26 5 8 6 11 14 7 16 23 11 25 gsumcom2 φGjS,kxD|xfFfjX=GkS,jxD|xfFfkX