Step |
Hyp |
Ref |
Expression |
1 |
|
psrbag.d |
|
2 |
|
psrbagconf1o.s |
|
3 |
|
gsumbagdiagOLD.i |
|
4 |
|
gsumbagdiagOLD.f |
|
5 |
|
simprr |
|
6 |
|
breq1 |
|
7 |
6
|
elrab |
|
8 |
5 7
|
sylib |
|
9 |
8
|
simpld |
|
10 |
8
|
simprd |
|
11 |
3
|
adantr |
|
12 |
4
|
adantr |
|
13 |
|
simprl |
|
14 |
|
breq1 |
|
15 |
14 2
|
elrab2 |
|
16 |
13 15
|
sylib |
|
17 |
16
|
simpld |
|
18 |
1
|
psrbagfOLD |
|
19 |
11 17 18
|
syl2anc |
|
20 |
16
|
simprd |
|
21 |
1
|
psrbagconOLD |
|
22 |
11 12 19 20 21
|
syl13anc |
|
23 |
22
|
simprd |
|
24 |
1
|
psrbagfOLD |
|
25 |
11 9 24
|
syl2anc |
|
26 |
22
|
simpld |
|
27 |
1
|
psrbagfOLD |
|
28 |
11 26 27
|
syl2anc |
|
29 |
1
|
psrbagfOLD |
|
30 |
11 12 29
|
syl2anc |
|
31 |
|
nn0re |
|
32 |
|
nn0re |
|
33 |
|
nn0re |
|
34 |
|
letr |
|
35 |
31 32 33 34
|
syl3an |
|
36 |
35
|
adantl |
|
37 |
11 25 28 30 36
|
caoftrn |
|
38 |
10 23 37
|
mp2and |
|
39 |
|
breq1 |
|
40 |
39 2
|
elrab2 |
|
41 |
9 38 40
|
sylanbrc |
|
42 |
|
breq1 |
|
43 |
19
|
ffvelrnda |
|
44 |
25
|
ffvelrnda |
|
45 |
30
|
ffvelrnda |
|
46 |
|
nn0re |
|
47 |
|
nn0re |
|
48 |
|
nn0re |
|
49 |
|
leaddsub2 |
|
50 |
|
leaddsub |
|
51 |
49 50
|
bitr3d |
|
52 |
46 47 48 51
|
syl3an |
|
53 |
43 44 45 52
|
syl3anc |
|
54 |
53
|
ralbidva |
|
55 |
|
ovexd |
|
56 |
25
|
feqmptd |
|
57 |
30
|
ffnd |
|
58 |
19
|
ffnd |
|
59 |
|
inidm |
|
60 |
|
eqidd |
|
61 |
|
eqidd |
|
62 |
57 58 11 11 59 60 61
|
offval |
|
63 |
11 44 55 56 62
|
ofrfval2 |
|
64 |
|
ovexd |
|
65 |
19
|
feqmptd |
|
66 |
25
|
ffnd |
|
67 |
|
eqidd |
|
68 |
57 66 11 11 59 60 67
|
offval |
|
69 |
11 43 64 65 68
|
ofrfval2 |
|
70 |
54 63 69
|
3bitr4d |
|
71 |
10 70
|
mpbid |
|
72 |
42 17 71
|
elrabd |
|
73 |
41 72
|
jca |
|