Metamath Proof Explorer


Theorem psrbagconOLD

Description: Obsolete version of psrbagcon as of 5-Aug-2024. (Contributed by Mario Carneiro, 29-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis psrbag.d D=f0I|f-1Fin
Assertion psrbagconOLD IVFDG:I0GfFFfGDFfGfF

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 simpr1 IVFDG:I0GfFFD
3 1 psrbag IVFDF:I0F-1Fin
4 3 adantr IVFDG:I0GfFFDF:I0F-1Fin
5 2 4 mpbid IVFDG:I0GfFF:I0F-1Fin
6 5 simpld IVFDG:I0GfFF:I0
7 6 ffnd IVFDG:I0GfFFFnI
8 simpr2 IVFDG:I0GfFG:I0
9 8 ffnd IVFDG:I0GfFGFnI
10 simpl IVFDG:I0GfFIV
11 inidm II=I
12 7 9 10 10 11 offn IVFDG:I0GfFFfGFnI
13 eqidd IVFDG:I0GfFxIFx=Fx
14 eqidd IVFDG:I0GfFxIGx=Gx
15 7 9 10 10 11 13 14 ofval IVFDG:I0GfFxIFfGx=FxGx
16 simpr3 IVFDG:I0GfFGfF
17 9 7 10 10 11 14 13 ofrfval IVFDG:I0GfFGfFxIGxFx
18 16 17 mpbid IVFDG:I0GfFxIGxFx
19 18 r19.21bi IVFDG:I0GfFxIGxFx
20 8 ffvelcdmda IVFDG:I0GfFxIGx0
21 6 ffvelcdmda IVFDG:I0GfFxIFx0
22 nn0sub Gx0Fx0GxFxFxGx0
23 20 21 22 syl2anc IVFDG:I0GfFxIGxFxFxGx0
24 19 23 mpbid IVFDG:I0GfFxIFxGx0
25 15 24 eqeltrd IVFDG:I0GfFxIFfGx0
26 25 ralrimiva IVFDG:I0GfFxIFfGx0
27 ffnfv FfG:I0FfGFnIxIFfGx0
28 12 26 27 sylanbrc IVFDG:I0GfFFfG:I0
29 5 simprd IVFDG:I0GfFF-1Fin
30 20 nn0ge0d IVFDG:I0GfFxI0Gx
31 nn0re Fx0Fx
32 nn0re Gx0Gx
33 subge02 FxGx0GxFxGxFx
34 31 32 33 syl2an Fx0Gx00GxFxGxFx
35 21 20 34 syl2anc IVFDG:I0GfFxI0GxFxGxFx
36 30 35 mpbid IVFDG:I0GfFxIFxGxFx
37 36 ralrimiva IVFDG:I0GfFxIFxGxFx
38 12 7 10 10 11 15 13 ofrfval IVFDG:I0GfFFfGfFxIFxGxFx
39 37 38 mpbird IVFDG:I0GfFFfGfF
40 1 psrbaglesuppOLD IVFDFfG:I0FfGfFFfG-1F-1
41 10 2 28 39 40 syl13anc IVFDG:I0GfFFfG-1F-1
42 29 41 ssfid IVFDG:I0GfFFfG-1Fin
43 1 psrbag IVFfGDFfG:I0FfG-1Fin
44 43 adantr IVFDG:I0GfFFfGDFfG:I0FfG-1Fin
45 28 42 44 mpbir2and IVFDG:I0GfFFfGD
46 45 39 jca IVFDG:I0GfFFfGDFfGfF