Metamath Proof Explorer


Theorem psrbaglesuppOLD

Description: Obsolete version of psrbaglesupp as of 5-Aug-2024. (Contributed by Mario Carneiro, 29-Dec-2014) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis psrbag.d D = f 0 I | f -1 Fin
Assertion psrbaglesuppOLD I V F D G : I 0 G f F G -1 F -1

Proof

Step Hyp Ref Expression
1 psrbag.d D = f 0 I | f -1 Fin
2 frnnn0supp I V G : I 0 G supp 0 = G -1
3 2 3ad2antr2 I V F D G : I 0 G f F G supp 0 = G -1
4 simpr2 I V F D G : I 0 G f F G : I 0
5 eldifi x I F -1 x I
6 simpr3 I V F D G : I 0 G f F G f F
7 4 ffnd I V F D G : I 0 G f F G Fn I
8 1 psrbagfOLD I V F D F : I 0
9 8 3ad2antr1 I V F D G : I 0 G f F F : I 0
10 9 ffnd I V F D G : I 0 G f F F Fn I
11 simpl I V F D G : I 0 G f F I V
12 inidm I I = I
13 eqidd I V F D G : I 0 G f F x I G x = G x
14 eqidd I V F D G : I 0 G f F x I F x = F x
15 7 10 11 11 12 13 14 ofrfval I V F D G : I 0 G f F G f F x I G x F x
16 6 15 mpbid I V F D G : I 0 G f F x I G x F x
17 16 r19.21bi I V F D G : I 0 G f F x I G x F x
18 5 17 sylan2 I V F D G : I 0 G f F x I F -1 G x F x
19 11 9 jca I V F D G : I 0 G f F I V F : I 0
20 frnnn0supp I V F : I 0 F supp 0 = F -1
21 eqimss F supp 0 = F -1 F supp 0 F -1
22 19 20 21 3syl I V F D G : I 0 G f F F supp 0 F -1
23 c0ex 0 V
24 23 a1i I V F D G : I 0 G f F 0 V
25 9 22 11 24 suppssr I V F D G : I 0 G f F x I F -1 F x = 0
26 18 25 breqtrd I V F D G : I 0 G f F x I F -1 G x 0
27 ffvelrn G : I 0 x I G x 0
28 4 5 27 syl2an I V F D G : I 0 G f F x I F -1 G x 0
29 28 nn0ge0d I V F D G : I 0 G f F x I F -1 0 G x
30 28 nn0red I V F D G : I 0 G f F x I F -1 G x
31 0re 0
32 letri3 G x 0 G x = 0 G x 0 0 G x
33 30 31 32 sylancl I V F D G : I 0 G f F x I F -1 G x = 0 G x 0 0 G x
34 26 29 33 mpbir2and I V F D G : I 0 G f F x I F -1 G x = 0
35 4 34 suppss I V F D G : I 0 G f F G supp 0 F -1
36 3 35 eqsstrrd I V F D G : I 0 G f F G -1 F -1