Metamath Proof Explorer


Theorem psrbaglesuppOLD

Description: Obsolete version of psrbaglesupp as of 5-Aug-2024. (Contributed by Mario Carneiro, 29-Dec-2014) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis psrbag.d D=f0I|f-1Fin
Assertion psrbaglesuppOLD IVFDG:I0GfFG-1F-1

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 fcdmnn0supp IVG:I0Gsupp0=G-1
3 2 3ad2antr2 IVFDG:I0GfFGsupp0=G-1
4 simpr2 IVFDG:I0GfFG:I0
5 eldifi xIF-1xI
6 simpr3 IVFDG:I0GfFGfF
7 4 ffnd IVFDG:I0GfFGFnI
8 1 psrbagfOLD IVFDF:I0
9 8 3ad2antr1 IVFDG:I0GfFF:I0
10 9 ffnd IVFDG:I0GfFFFnI
11 simpl IVFDG:I0GfFIV
12 inidm II=I
13 eqidd IVFDG:I0GfFxIGx=Gx
14 eqidd IVFDG:I0GfFxIFx=Fx
15 7 10 11 11 12 13 14 ofrfval IVFDG:I0GfFGfFxIGxFx
16 6 15 mpbid IVFDG:I0GfFxIGxFx
17 16 r19.21bi IVFDG:I0GfFxIGxFx
18 5 17 sylan2 IVFDG:I0GfFxIF-1GxFx
19 11 9 jca IVFDG:I0GfFIVF:I0
20 fcdmnn0supp IVF:I0Fsupp0=F-1
21 eqimss Fsupp0=F-1Fsupp0F-1
22 19 20 21 3syl IVFDG:I0GfFFsupp0F-1
23 c0ex 0V
24 23 a1i IVFDG:I0GfF0V
25 9 22 11 24 suppssr IVFDG:I0GfFxIF-1Fx=0
26 18 25 breqtrd IVFDG:I0GfFxIF-1Gx0
27 ffvelcdm G:I0xIGx0
28 4 5 27 syl2an IVFDG:I0GfFxIF-1Gx0
29 28 nn0ge0d IVFDG:I0GfFxIF-10Gx
30 28 nn0red IVFDG:I0GfFxIF-1Gx
31 0re 0
32 letri3 Gx0Gx=0Gx00Gx
33 30 31 32 sylancl IVFDG:I0GfFxIF-1Gx=0Gx00Gx
34 26 29 33 mpbir2and IVFDG:I0GfFxIF-1Gx=0
35 4 34 suppss IVFDG:I0GfFGsupp0F-1
36 3 35 eqsstrrd IVFDG:I0GfFG-1F-1