| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptfsf1o.x |
|
| 2 |
|
gsummptfsf1o.b |
|
| 3 |
|
gsummptfsf1o.z |
|
| 4 |
|
gsummptfsf1o.i |
|
| 5 |
|
gsummptfsf1o.g |
|
| 6 |
|
gsummptfsf1o.1 |
|
| 7 |
|
gsummptfsf1o.a |
|
| 8 |
|
gsummptfsf1o.d |
|
| 9 |
|
gsummptfsf1o.f |
|
| 10 |
|
gsummptfsf1o.e |
|
| 11 |
|
gsummptfsf1o.h |
|
| 12 |
8
|
adantr |
|
| 13 |
12 9
|
sseldd |
|
| 14 |
13
|
fmpttd |
|
| 15 |
10
|
ralrimiva |
|
| 16 |
11
|
ralrimiva |
|
| 17 |
|
eqid |
|
| 18 |
17
|
f1ompt |
|
| 19 |
15 16 18
|
sylanbrc |
|
| 20 |
2 3 5 6 14 7 19
|
gsumf1o |
|
| 21 |
|
eqidd |
|
| 22 |
|
eqidd |
|
| 23 |
15 21 22
|
fmptcos |
|
| 24 |
|
nfv |
|
| 25 |
1
|
a1i |
|
| 26 |
4
|
adantl |
|
| 27 |
24 25 10 26
|
csbiedf |
|
| 28 |
27
|
mpteq2dva |
|
| 29 |
23 28
|
eqtrd |
|
| 30 |
29
|
oveq2d |
|
| 31 |
20 30
|
eqtrd |
|