Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumunsnd.b | |
|
gsumunsnd.p | |
||
gsumunsnd.g | |
||
gsumunsnd.a | |
||
gsumunsnd.f | |
||
gsumunsnd.m | |
||
gsumunsnd.d | |
||
gsumunsnd.y | |
||
gsumunsnd.s | |
||
gsumunsnfd.0 | |
||
Assertion | gsumunsnfd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumunsnd.b | |
|
2 | gsumunsnd.p | |
|
3 | gsumunsnd.g | |
|
4 | gsumunsnd.a | |
|
5 | gsumunsnd.f | |
|
6 | gsumunsnd.m | |
|
7 | gsumunsnd.d | |
|
8 | gsumunsnd.y | |
|
9 | gsumunsnd.s | |
|
10 | gsumunsnfd.0 | |
|
11 | snfi | |
|
12 | unfi | |
|
13 | 4 11 12 | sylancl | |
14 | elun | |
|
15 | elsni | |
|
16 | 15 9 | sylan2 | |
17 | 8 | adantr | |
18 | 16 17 | eqeltrd | |
19 | 5 18 | jaodan | |
20 | 14 19 | sylan2b | |
21 | disjsn | |
|
22 | 7 21 | sylibr | |
23 | eqidd | |
|
24 | 1 2 3 13 20 22 23 | gsummptfidmsplit | |
25 | cmnmnd | |
|
26 | 3 25 | syl | |
27 | nfv | |
|
28 | 1 26 6 8 9 27 10 | gsumsnfd | |
29 | 28 | oveq2d | |
30 | 24 29 | eqtrd | |