Metamath Proof Explorer


Theorem gsumunsnfd

Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumunsnd.b B=BaseG
gsumunsnd.p +˙=+G
gsumunsnd.g φGCMnd
gsumunsnd.a φAFin
gsumunsnd.f φkAXB
gsumunsnd.m φMV
gsumunsnd.d φ¬MA
gsumunsnd.y φYB
gsumunsnd.s φk=MX=Y
gsumunsnfd.0 _kY
Assertion gsumunsnfd φGkAMX=GkAX+˙Y

Proof

Step Hyp Ref Expression
1 gsumunsnd.b B=BaseG
2 gsumunsnd.p +˙=+G
3 gsumunsnd.g φGCMnd
4 gsumunsnd.a φAFin
5 gsumunsnd.f φkAXB
6 gsumunsnd.m φMV
7 gsumunsnd.d φ¬MA
8 gsumunsnd.y φYB
9 gsumunsnd.s φk=MX=Y
10 gsumunsnfd.0 _kY
11 snfi MFin
12 unfi AFinMFinAMFin
13 4 11 12 sylancl φAMFin
14 elun kAMkAkM
15 elsni kMk=M
16 15 9 sylan2 φkMX=Y
17 8 adantr φkMYB
18 16 17 eqeltrd φkMXB
19 5 18 jaodan φkAkMXB
20 14 19 sylan2b φkAMXB
21 disjsn AM=¬MA
22 7 21 sylibr φAM=
23 eqidd φAM=AM
24 1 2 3 13 20 22 23 gsummptfidmsplit φGkAMX=GkAX+˙GkMX
25 cmnmnd GCMndGMnd
26 3 25 syl φGMnd
27 nfv kφ
28 1 26 6 8 9 27 10 gsumsnfd φGkMX=Y
29 28 oveq2d φGkAX+˙GkMX=GkAX+˙Y
30 24 29 eqtrd φGkAMX=GkAX+˙Y