| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzcl.b |
|
| 2 |
|
gsumzcl.0 |
|
| 3 |
|
gsumzcl.z |
|
| 4 |
|
gsumzcl.g |
|
| 5 |
|
gsumzcl.a |
|
| 6 |
|
gsumzcl.f |
|
| 7 |
|
gsumzcl.c |
|
| 8 |
|
gsumzcl2.w |
|
| 9 |
2
|
fvexi |
|
| 10 |
9
|
a1i |
|
| 11 |
|
ssidd |
|
| 12 |
6 5 10 11
|
gsumcllem |
|
| 13 |
12
|
oveq2d |
|
| 14 |
2
|
gsumz |
|
| 15 |
4 5 14
|
syl2anc |
|
| 16 |
15
|
adantr |
|
| 17 |
13 16
|
eqtrd |
|
| 18 |
1 2
|
mndidcl |
|
| 19 |
4 18
|
syl |
|
| 20 |
19
|
adantr |
|
| 21 |
17 20
|
eqeltrd |
|
| 22 |
21
|
ex |
|
| 23 |
|
eqid |
|
| 24 |
4
|
adantr |
|
| 25 |
5
|
adantr |
|
| 26 |
6
|
adantr |
|
| 27 |
7
|
adantr |
|
| 28 |
|
simprl |
|
| 29 |
|
f1of1 |
|
| 30 |
29
|
ad2antll |
|
| 31 |
|
suppssdm |
|
| 32 |
31 6
|
fssdm |
|
| 33 |
32
|
adantr |
|
| 34 |
|
f1ss |
|
| 35 |
30 33 34
|
syl2anc |
|
| 36 |
|
ssid |
|
| 37 |
|
f1ofo |
|
| 38 |
|
forn |
|
| 39 |
37 38
|
syl |
|
| 40 |
39
|
ad2antll |
|
| 41 |
36 40
|
sseqtrrid |
|
| 42 |
|
eqid |
|
| 43 |
1 2 23 3 24 25 26 27 28 35 41 42
|
gsumval3 |
|
| 44 |
|
nnuz |
|
| 45 |
28 44
|
eleqtrdi |
|
| 46 |
|
f1f |
|
| 47 |
35 46
|
syl |
|
| 48 |
|
fco |
|
| 49 |
26 47 48
|
syl2anc |
|
| 50 |
49
|
ffvelcdmda |
|
| 51 |
1 23
|
mndcl |
|
| 52 |
51
|
3expb |
|
| 53 |
24 52
|
sylan |
|
| 54 |
45 50 53
|
seqcl |
|
| 55 |
43 54
|
eqeltrd |
|
| 56 |
55
|
expr |
|
| 57 |
56
|
exlimdv |
|
| 58 |
57
|
expimpd |
|
| 59 |
|
fz1f1o |
|
| 60 |
8 59
|
syl |
|
| 61 |
22 58 60
|
mpjaod |
|