Metamath Proof Explorer


Theorem hash2pwpr

Description: If the size of a subset of an unordered pair is 2, the subset is the pair itself. (Contributed by Alexander van der Vekens, 9-Dec-2018)

Ref Expression
Assertion hash2pwpr P=2P𝒫XYP=XY

Proof

Step Hyp Ref Expression
1 pwpr 𝒫XY=XYXY
2 1 eleq2i P𝒫XYPXYXY
3 elun PXYXYPXPYXY
4 2 3 bitri P𝒫XYPXPYXY
5 fveq2 P=P=
6 hash0 =0
7 6 eqeq2i P=P=0
8 eqeq1 P=0P=20=2
9 0ne2 02
10 eqneqall 0=202P=XY
11 9 10 mpi 0=2P=XY
12 8 11 syl6bi P=0P=2P=XY
13 7 12 sylbi P=P=2P=XY
14 5 13 syl P=P=2P=XY
15 hashsng XVX=1
16 fveq2 X=PX=P
17 16 eqcoms P=XX=P
18 17 eqeq1d P=XX=1P=1
19 eqeq1 P=1P=21=2
20 1ne2 12
21 eqneqall 1=212P=XY
22 20 21 mpi 1=2P=XY
23 19 22 syl6bi P=1P=2P=XY
24 18 23 syl6bi P=XX=1P=2P=XY
25 15 24 syl5com XVP=XP=2P=XY
26 snprc ¬XVX=
27 eqeq2 X=P=XP=
28 5 6 eqtrdi P=P=0
29 28 eqeq1d P=P=20=2
30 29 11 syl6bi P=P=2P=XY
31 27 30 syl6bi X=P=XP=2P=XY
32 26 31 sylbi ¬XVP=XP=2P=XY
33 25 32 pm2.61i P=XP=2P=XY
34 14 33 jaoi P=P=XP=2P=XY
35 hashsng YVY=1
36 fveq2 Y=PY=P
37 36 eqcoms P=YY=P
38 37 eqeq1d P=YY=1P=1
39 38 23 syl6bi P=YY=1P=2P=XY
40 35 39 syl5com YVP=YP=2P=XY
41 snprc ¬YVY=
42 eqeq2 Y=P=YP=
43 5 eqeq1d P=P=2=2
44 6 eqeq1i =20=2
45 44 11 sylbi =2P=XY
46 43 45 syl6bi P=P=2P=XY
47 42 46 syl6bi Y=P=YP=2P=XY
48 41 47 sylbi ¬YVP=YP=2P=XY
49 40 48 pm2.61i P=YP=2P=XY
50 ax-1 P=XYP=2P=XY
51 49 50 jaoi P=YP=XYP=2P=XY
52 34 51 jaoi P=P=XP=YP=XYP=2P=XY
53 elpri PXP=P=X
54 elpri PYXYP=YP=XY
55 53 54 orim12i PXPYXYP=P=XP=YP=XY
56 52 55 syl11 P=2PXPYXYP=XY
57 4 56 biimtrid P=2P𝒫XYP=XY
58 57 imp P=2P𝒫XYP=XY