Metamath Proof Explorer


Theorem hashun3

Description: The size of the union of finite sets is the sum of their sizes minus the size of the intersection. (Contributed by Mario Carneiro, 6-Aug-2017)

Ref Expression
Assertion hashun3 AFinBFinAB=A+B-AB

Proof

Step Hyp Ref Expression
1 diffi BFinBAFin
2 1 adantl AFinBFinBAFin
3 simpl AFinBFinAFin
4 inss1 ABA
5 ssfi AFinABAABFin
6 3 4 5 sylancl AFinBFinABFin
7 sslin ABABAABBAA
8 4 7 ax-mp BAABBAA
9 disjdifr BAA=
10 sseq0 BAABBAABAA=BAAB=
11 8 9 10 mp2an BAAB=
12 11 a1i AFinBFinBAAB=
13 hashun BAFinABFinBAAB=BAAB=BA+AB
14 2 6 12 13 syl3anc AFinBFinBAAB=BA+AB
15 incom AB=BA
16 15 uneq2i BAAB=BABA
17 uncom BABA=BABA
18 inundif BABA=B
19 16 17 18 3eqtri BAAB=B
20 19 a1i AFinBFinBAAB=B
21 20 fveq2d AFinBFinBAAB=B
22 14 21 eqtr3d AFinBFinBA+AB=B
23 hashcl BFinB0
24 23 adantl AFinBFinB0
25 24 nn0cnd AFinBFinB
26 hashcl ABFinAB0
27 6 26 syl AFinBFinAB0
28 27 nn0cnd AFinBFinAB
29 hashcl BAFinBA0
30 2 29 syl AFinBFinBA0
31 30 nn0cnd AFinBFinBA
32 25 28 31 subadd2d AFinBFinBAB=BABA+AB=B
33 22 32 mpbird AFinBFinBAB=BA
34 33 oveq2d AFinBFinA+B-AB=A+BA
35 hashcl AFinA0
36 35 adantr AFinBFinA0
37 36 nn0cnd AFinBFinA
38 37 25 28 addsubassd AFinBFinA+B-AB=A+B-AB
39 undif2 ABA=AB
40 39 fveq2i ABA=AB
41 disjdif ABA=
42 41 a1i AFinBFinABA=
43 hashun AFinBAFinABA=ABA=A+BA
44 3 2 42 43 syl3anc AFinBFinABA=A+BA
45 40 44 eqtr3id AFinBFinAB=A+BA
46 34 38 45 3eqtr4rd AFinBFinAB=A+B-AB