Metamath Proof Explorer


Theorem hdmap14lem12

Description: Lemma for proof of part 14 in Baer p. 50. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hdmap14lem12.h H=LHypK
hdmap14lem12.u U=DVecHKW
hdmap14lem12.v V=BaseU
hdmap14lem12.t ·˙=U
hdmap14lem12.r R=ScalarU
hdmap14lem12.b B=BaseR
hdmap14lem12.c C=LCDualKW
hdmap14lem12.e ˙=C
hdmap14lem12.s S=HDMapKW
hdmap14lem12.k φKHLWH
hdmap14lem12.f φFB
hdmap14lem12.p P=ScalarC
hdmap14lem12.a A=BaseP
hdmap14lem12.o 0˙=0U
hdmap14lem12.x φXV0˙
hdmap14lem12.g φGA
Assertion hdmap14lem12 φSF·˙X=G˙SXyV0˙SF·˙y=G˙Sy

Proof

Step Hyp Ref Expression
1 hdmap14lem12.h H=LHypK
2 hdmap14lem12.u U=DVecHKW
3 hdmap14lem12.v V=BaseU
4 hdmap14lem12.t ·˙=U
5 hdmap14lem12.r R=ScalarU
6 hdmap14lem12.b B=BaseR
7 hdmap14lem12.c C=LCDualKW
8 hdmap14lem12.e ˙=C
9 hdmap14lem12.s S=HDMapKW
10 hdmap14lem12.k φKHLWH
11 hdmap14lem12.f φFB
12 hdmap14lem12.p P=ScalarC
13 hdmap14lem12.a A=BaseP
14 hdmap14lem12.o 0˙=0U
15 hdmap14lem12.x φXV0˙
16 hdmap14lem12.g φGA
17 eqid LSpanC=LSpanC
18 10 3ad2ant1 φSF·˙X=G˙SXyV0˙KHLWH
19 simp3 φSF·˙X=G˙SXyV0˙yV0˙
20 19 eldifad φSF·˙X=G˙SXyV0˙yV
21 11 3ad2ant1 φSF·˙X=G˙SXyV0˙FB
22 1 2 3 4 5 6 7 8 17 12 13 9 18 20 21 hdmap14lem2a φSF·˙X=G˙SXyV0˙gASF·˙y=g˙Sy
23 simp3 φSF·˙X=G˙SXyV0˙gASF·˙y=g˙SySF·˙y=g˙Sy
24 eqid +U=+U
25 eqid LSpanU=LSpanU
26 eqid +C=+C
27 simp11 φSF·˙X=G˙SXyV0˙gASF·˙y=g˙Syφ
28 27 10 syl φSF·˙X=G˙SXyV0˙gASF·˙y=g˙SyKHLWH
29 27 15 syl φSF·˙X=G˙SXyV0˙gASF·˙y=g˙SyXV0˙
30 simp13 φSF·˙X=G˙SXyV0˙gASF·˙y=g˙SyyV0˙
31 27 11 syl φSF·˙X=G˙SXyV0˙gASF·˙y=g˙SyFB
32 27 16 syl φSF·˙X=G˙SXyV0˙gASF·˙y=g˙SyGA
33 simp2 φSF·˙X=G˙SXyV0˙gASF·˙y=g˙SygA
34 simp12 φSF·˙X=G˙SXyV0˙gASF·˙y=g˙SySF·˙X=G˙SX
35 1 2 3 24 4 14 25 5 6 7 26 8 12 13 9 28 29 30 31 32 33 34 23 hdmap14lem11 φSF·˙X=G˙SXyV0˙gASF·˙y=g˙SyG=g
36 35 oveq1d φSF·˙X=G˙SXyV0˙gASF·˙y=g˙SyG˙Sy=g˙Sy
37 23 36 eqtr4d φSF·˙X=G˙SXyV0˙gASF·˙y=g˙SySF·˙y=G˙Sy
38 37 rexlimdv3a φSF·˙X=G˙SXyV0˙gASF·˙y=g˙SySF·˙y=G˙Sy
39 22 38 mpd φSF·˙X=G˙SXyV0˙SF·˙y=G˙Sy
40 39 3expia φSF·˙X=G˙SXyV0˙SF·˙y=G˙Sy
41 40 ralrimiv φSF·˙X=G˙SXyV0˙SF·˙y=G˙Sy
42 oveq2 y=XF·˙y=F·˙X
43 42 fveq2d y=XSF·˙y=SF·˙X
44 fveq2 y=XSy=SX
45 44 oveq2d y=XG˙Sy=G˙SX
46 43 45 eqeq12d y=XSF·˙y=G˙SySF·˙X=G˙SX
47 46 rspcv XV0˙yV0˙SF·˙y=G˙SySF·˙X=G˙SX
48 15 47 syl φyV0˙SF·˙y=G˙SySF·˙X=G˙SX
49 48 imp φyV0˙SF·˙y=G˙SySF·˙X=G˙SX
50 41 49 impbida φSF·˙X=G˙SXyV0˙SF·˙y=G˙Sy