Description: Lemma for proof of part 14 in Baer p. 50. (Contributed by NM, 6-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmap14lem12.h | |
|
hdmap14lem12.u | |
||
hdmap14lem12.v | |
||
hdmap14lem12.t | |
||
hdmap14lem12.r | |
||
hdmap14lem12.b | |
||
hdmap14lem12.c | |
||
hdmap14lem12.e | |
||
hdmap14lem12.s | |
||
hdmap14lem12.k | |
||
hdmap14lem12.f | |
||
hdmap14lem12.p | |
||
hdmap14lem12.a | |
||
hdmap14lem12.o | |
||
hdmap14lem12.x | |
||
hdmap14lem12.g | |
||
Assertion | hdmap14lem12 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem12.h | |
|
2 | hdmap14lem12.u | |
|
3 | hdmap14lem12.v | |
|
4 | hdmap14lem12.t | |
|
5 | hdmap14lem12.r | |
|
6 | hdmap14lem12.b | |
|
7 | hdmap14lem12.c | |
|
8 | hdmap14lem12.e | |
|
9 | hdmap14lem12.s | |
|
10 | hdmap14lem12.k | |
|
11 | hdmap14lem12.f | |
|
12 | hdmap14lem12.p | |
|
13 | hdmap14lem12.a | |
|
14 | hdmap14lem12.o | |
|
15 | hdmap14lem12.x | |
|
16 | hdmap14lem12.g | |
|
17 | eqid | |
|
18 | 10 | 3ad2ant1 | |
19 | simp3 | |
|
20 | 19 | eldifad | |
21 | 11 | 3ad2ant1 | |
22 | 1 2 3 4 5 6 7 8 17 12 13 9 18 20 21 | hdmap14lem2a | |
23 | simp3 | |
|
24 | eqid | |
|
25 | eqid | |
|
26 | eqid | |
|
27 | simp11 | |
|
28 | 27 10 | syl | |
29 | 27 15 | syl | |
30 | simp13 | |
|
31 | 27 11 | syl | |
32 | 27 16 | syl | |
33 | simp2 | |
|
34 | simp12 | |
|
35 | 1 2 3 24 4 14 25 5 6 7 26 8 12 13 9 28 29 30 31 32 33 34 23 | hdmap14lem11 | |
36 | 35 | oveq1d | |
37 | 23 36 | eqtr4d | |
38 | 37 | rexlimdv3a | |
39 | 22 38 | mpd | |
40 | 39 | 3expia | |
41 | 40 | ralrimiv | |
42 | oveq2 | |
|
43 | 42 | fveq2d | |
44 | fveq2 | |
|
45 | 44 | oveq2d | |
46 | 43 45 | eqeq12d | |
47 | 46 | rspcv | |
48 | 15 47 | syl | |
49 | 48 | imp | |
50 | 41 49 | impbida | |