Metamath Proof Explorer


Theorem hdmapglnm2

Description: g-linear property of second (inner product) argument. Line 19 in Holland95 p. 14. (Contributed by NM, 10-Jun-2015)

Ref Expression
Hypotheses hdmapglnm2.h H=LHypK
hdmapglnm2.u U=DVecHKW
hdmapglnm2.v V=BaseU
hdmapglnm2.t ·˙=U
hdmapglnm2.r R=ScalarU
hdmapglnm2.b B=BaseR
hdmapglnm2.m ×˙=R
hdmapglnm2.s S=HDMapKW
hdmapglnm2.g G=HGMapKW
hdmapglnm2.k φKHLWH
hdmapglnm2.x φXV
hdmapglnm2.y φYV
hdmapglnm2.z φAB
Assertion hdmapglnm2 φSA·˙YX=SYX×˙GA

Proof

Step Hyp Ref Expression
1 hdmapglnm2.h H=LHypK
2 hdmapglnm2.u U=DVecHKW
3 hdmapglnm2.v V=BaseU
4 hdmapglnm2.t ·˙=U
5 hdmapglnm2.r R=ScalarU
6 hdmapglnm2.b B=BaseR
7 hdmapglnm2.m ×˙=R
8 hdmapglnm2.s S=HDMapKW
9 hdmapglnm2.g G=HGMapKW
10 hdmapglnm2.k φKHLWH
11 hdmapglnm2.x φXV
12 hdmapglnm2.y φYV
13 hdmapglnm2.z φAB
14 eqid LCDualKW=LCDualKW
15 eqid LCDualKW=LCDualKW
16 1 2 3 4 5 6 14 15 8 9 10 12 13 hgmapvs φSA·˙Y=GALCDualKWSY
17 16 fveq1d φSA·˙YX=GALCDualKWSYX
18 eqid BaseLCDualKW=BaseLCDualKW
19 1 2 5 6 9 10 13 hgmapcl φGAB
20 1 2 3 14 18 8 10 12 hdmapcl φSYBaseLCDualKW
21 1 2 3 5 6 7 14 18 15 10 19 20 11 lcdvsval φGALCDualKWSYX=SYX×˙GA
22 17 21 eqtrd φSA·˙YX=SYX×˙GA