Metamath Proof Explorer


Theorem hdmapinvlem2

Description: Line 28 in Baer p. 110, 0 = f(w,u). (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses hdmapinvlem1.h H=LHypK
hdmapinvlem1.e E=IBaseKILTrnKW
hdmapinvlem1.o O=ocHKW
hdmapinvlem1.u U=DVecHKW
hdmapinvlem1.v V=BaseU
hdmapinvlem1.r R=ScalarU
hdmapinvlem1.b B=BaseR
hdmapinvlem1.t ·˙=R
hdmapinvlem1.z 0˙=0R
hdmapinvlem1.s S=HDMapKW
hdmapinvlem1.k φKHLWH
hdmapinvlem1.c φCOE
Assertion hdmapinvlem2 φSCE=0˙

Proof

Step Hyp Ref Expression
1 hdmapinvlem1.h H=LHypK
2 hdmapinvlem1.e E=IBaseKILTrnKW
3 hdmapinvlem1.o O=ocHKW
4 hdmapinvlem1.u U=DVecHKW
5 hdmapinvlem1.v V=BaseU
6 hdmapinvlem1.r R=ScalarU
7 hdmapinvlem1.b B=BaseR
8 hdmapinvlem1.t ·˙=R
9 hdmapinvlem1.z 0˙=0R
10 hdmapinvlem1.s S=HDMapKW
11 hdmapinvlem1.k φKHLWH
12 hdmapinvlem1.c φCOE
13 1 2 3 4 5 6 7 8 9 10 11 12 hdmapinvlem1 φSEC=0˙
14 eqid BaseK=BaseK
15 eqid LTrnKW=LTrnKW
16 eqid 0U=0U
17 1 14 15 4 5 16 2 11 dvheveccl φEV0U
18 17 eldifad φEV
19 18 snssd φEV
20 1 4 5 3 dochssv KHLWHEVOEV
21 11 19 20 syl2anc φOEV
22 21 12 sseldd φCV
23 1 4 5 6 9 10 11 18 22 hdmapip0com φSEC=0˙SCE=0˙
24 13 23 mpbid φSCE=0˙