Metamath Proof Explorer


Theorem hgmapcl

Description: Closure of scalar sigma map i.e. the map from the vector space scalar base to the dual space scalar base. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hgmapcl.h H=LHypK
hgmapcl.u U=DVecHKW
hgmapcl.r R=ScalarU
hgmapcl.b B=BaseR
hgmapcl.g G=HGMapKW
hgmapcl.k φKHLWH
hgmapcl.f φFB
Assertion hgmapcl φGFB

Proof

Step Hyp Ref Expression
1 hgmapcl.h H=LHypK
2 hgmapcl.u U=DVecHKW
3 hgmapcl.r R=ScalarU
4 hgmapcl.b B=BaseR
5 hgmapcl.g G=HGMapKW
6 hgmapcl.k φKHLWH
7 hgmapcl.f φFB
8 eqid BaseU=BaseU
9 eqid U=U
10 eqid LCDualKW=LCDualKW
11 eqid LCDualKW=LCDualKW
12 eqid HDMapKW=HDMapKW
13 1 2 8 9 3 4 10 11 12 5 6 7 hgmapval φGF=ιgB|xBaseUHDMapKWFUx=gLCDualKWHDMapKWx
14 1 2 8 9 3 4 10 11 12 6 7 hdmap14lem15 φ∃!gBxBaseUHDMapKWFUx=gLCDualKWHDMapKWx
15 riotacl ∃!gBxBaseUHDMapKWFUx=gLCDualKWHDMapKWxιgB|xBaseUHDMapKWFUx=gLCDualKWHDMapKWxB
16 14 15 syl φιgB|xBaseUHDMapKWFUx=gLCDualKWHDMapKWxB
17 13 16 eqeltrd φGFB