Metamath Proof Explorer


Theorem hgmapvs

Description: Part 15 of Baer p. 50 line 6. Also line 15 in Holland95 p. 14. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hgmapvs.h H = LHyp K
hgmapvs.u U = DVecH K W
hgmapvs.v V = Base U
hgmapvs.t · ˙ = U
hgmapvs.r R = Scalar U
hgmapvs.b B = Base R
hgmapvs.c C = LCDual K W
hgmapvs.e ˙ = C
hgmapvs.s S = HDMap K W
hgmapvs.g G = HGMap K W
hgmapvs.k φ K HL W H
hgmapvs.x φ X V
hgmapvs.f φ F B
Assertion hgmapvs φ S F · ˙ X = G F ˙ S X

Proof

Step Hyp Ref Expression
1 hgmapvs.h H = LHyp K
2 hgmapvs.u U = DVecH K W
3 hgmapvs.v V = Base U
4 hgmapvs.t · ˙ = U
5 hgmapvs.r R = Scalar U
6 hgmapvs.b B = Base R
7 hgmapvs.c C = LCDual K W
8 hgmapvs.e ˙ = C
9 hgmapvs.s S = HDMap K W
10 hgmapvs.g G = HGMap K W
11 hgmapvs.k φ K HL W H
12 hgmapvs.x φ X V
13 hgmapvs.f φ F B
14 1 2 3 4 5 6 7 8 9 10 11 13 hgmapval φ G F = ι g B | x V S F · ˙ x = g ˙ S x
15 14 eqcomd φ ι g B | x V S F · ˙ x = g ˙ S x = G F
16 1 2 5 6 10 11 13 hgmapcl φ G F B
17 1 2 3 4 5 6 7 8 9 11 13 hdmap14lem15 φ ∃! g B x V S F · ˙ x = g ˙ S x
18 oveq1 g = G F g ˙ S x = G F ˙ S x
19 18 eqeq2d g = G F S F · ˙ x = g ˙ S x S F · ˙ x = G F ˙ S x
20 19 ralbidv g = G F x V S F · ˙ x = g ˙ S x x V S F · ˙ x = G F ˙ S x
21 20 riota2 G F B ∃! g B x V S F · ˙ x = g ˙ S x x V S F · ˙ x = G F ˙ S x ι g B | x V S F · ˙ x = g ˙ S x = G F
22 16 17 21 syl2anc φ x V S F · ˙ x = G F ˙ S x ι g B | x V S F · ˙ x = g ˙ S x = G F
23 15 22 mpbird φ x V S F · ˙ x = G F ˙ S x
24 oveq2 x = X F · ˙ x = F · ˙ X
25 24 fveq2d x = X S F · ˙ x = S F · ˙ X
26 fveq2 x = X S x = S X
27 26 oveq2d x = X G F ˙ S x = G F ˙ S X
28 25 27 eqeq12d x = X S F · ˙ x = G F ˙ S x S F · ˙ X = G F ˙ S X
29 28 rspcva X V x V S F · ˙ x = G F ˙ S x S F · ˙ X = G F ˙ S X
30 12 23 29 syl2anc φ S F · ˙ X = G F ˙ S X