Metamath Proof Explorer


Theorem hgmapvv

Description: Value of a double involution. Part 1.2 of Baer p. 110 line 37. (Contributed by NM, 13-Jun-2015)

Ref Expression
Hypotheses hgmapvv.h H=LHypK
hgmapvv.u U=DVecHKW
hgmapvv.r R=ScalarU
hgmapvv.b B=BaseR
hgmapvv.g G=HGMapKW
hgmapvv.k φKHLWH
hgmapvv.j φXB
Assertion hgmapvv φGGX=X

Proof

Step Hyp Ref Expression
1 hgmapvv.h H=LHypK
2 hgmapvv.u U=DVecHKW
3 hgmapvv.r R=ScalarU
4 hgmapvv.b B=BaseR
5 hgmapvv.g G=HGMapKW
6 hgmapvv.k φKHLWH
7 hgmapvv.j φXB
8 2fveq3 X=0RGGX=GG0R
9 id X=0RX=0R
10 8 9 eqeq12d X=0RGGX=XGG0R=0R
11 eqid IBaseKILTrnKW=IBaseKILTrnKW
12 eqid ocHKW=ocHKW
13 eqid BaseU=BaseU
14 eqid U=U
15 eqid R=R
16 eqid 0R=0R
17 eqid 1R=1R
18 eqid invrR=invrR
19 eqid HDMapKW=HDMapKW
20 6 adantr φX0RKHLWH
21 7 anim1i φX0RXBX0R
22 eldifsn XB0RXBX0R
23 21 22 sylibr φX0RXB0R
24 1 11 12 2 13 14 3 4 15 16 17 18 19 5 20 23 hgmapvvlem3 φX0RGGX=X
25 1 2 3 16 5 6 hgmapval0 φG0R=0R
26 25 fveq2d φGG0R=G0R
27 26 25 eqtrd φGG0R=0R
28 10 24 27 pm2.61ne φGGX=X