Metamath Proof Explorer


Theorem hhnv

Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 U=+norm
Assertion hhnv UNrmCVec

Proof

Step Hyp Ref Expression
1 hhnv.1 U=+norm
2 hilablo +AbelOp
3 ablogrpo +AbelOp+GrpOp
4 2 3 ax-mp +GrpOp
5 ax-hfvadd +:×
6 5 fdmi dom+=×
7 4 6 grporn =ran+
8 hilid GId+=0
9 8 eqcomi 0=GId+
10 hilvc +CVecOLD
11 normf norm:
12 norm-i xnormx=0x=0
13 12 biimpa xnormx=0x=0
14 norm-iii yxnormyx=ynormx
15 norm-ii xynormx+ynormx+normy
16 7 9 10 11 13 14 15 1 isnvi UNrmCVec