Description: Lemma for hlhilsrng . (Contributed by NM, 21-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlhillvec.h | |
|
hlhillvec.u | |
||
hlhillvec.k | |
||
hlhildrng.r | |
||
hlhilsrng.l | |
||
hlhilsrng.s | |
||
hlhilsrng.b | |
||
hlhilsrng.p | |
||
hlhilsrng.t | |
||
hlhilsrng.g | |
||
Assertion | hlhilsrnglem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhillvec.h | |
|
2 | hlhillvec.u | |
|
3 | hlhillvec.k | |
|
4 | hlhildrng.r | |
|
5 | hlhilsrng.l | |
|
6 | hlhilsrng.s | |
|
7 | hlhilsrng.b | |
|
8 | hlhilsrng.p | |
|
9 | hlhilsrng.t | |
|
10 | hlhilsrng.g | |
|
11 | 1 5 6 2 4 3 7 | hlhilsbase2 | |
12 | 1 5 6 2 4 3 8 | hlhilsplus2 | |
13 | 1 5 6 2 4 3 9 | hlhilsmul2 | |
14 | 1 2 4 10 3 | hlhilnvl | |
15 | 1 2 3 4 | hlhildrng | |
16 | drngring | |
|
17 | 15 16 | syl | |
18 | 3 | adantr | |
19 | simpr | |
|
20 | 1 5 6 7 10 18 19 | hgmapcl | |
21 | 3 | 3ad2ant1 | |
22 | simp2 | |
|
23 | simp3 | |
|
24 | 1 5 6 7 8 10 21 22 23 | hgmapadd | |
25 | 1 5 6 7 9 10 21 22 23 | hgmapmul | |
26 | 1 5 6 7 10 18 19 | hgmapvv | |
27 | 11 12 13 14 17 20 24 25 26 | issrngd | |