Metamath Proof Explorer


Theorem hlhilsrnglem

Description: Lemma for hlhilsrng . (Contributed by NM, 21-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhillvec.h H=LHypK
hlhillvec.u U=HLHilKW
hlhillvec.k φKHLWH
hlhildrng.r R=ScalarU
hlhilsrng.l L=DVecHKW
hlhilsrng.s S=ScalarL
hlhilsrng.b B=BaseS
hlhilsrng.p +˙=+S
hlhilsrng.t ·˙=S
hlhilsrng.g G=HGMapKW
Assertion hlhilsrnglem φR*-Ring

Proof

Step Hyp Ref Expression
1 hlhillvec.h H=LHypK
2 hlhillvec.u U=HLHilKW
3 hlhillvec.k φKHLWH
4 hlhildrng.r R=ScalarU
5 hlhilsrng.l L=DVecHKW
6 hlhilsrng.s S=ScalarL
7 hlhilsrng.b B=BaseS
8 hlhilsrng.p +˙=+S
9 hlhilsrng.t ·˙=S
10 hlhilsrng.g G=HGMapKW
11 1 5 6 2 4 3 7 hlhilsbase2 φB=BaseR
12 1 5 6 2 4 3 8 hlhilsplus2 φ+˙=+R
13 1 5 6 2 4 3 9 hlhilsmul2 φ·˙=R
14 1 2 4 10 3 hlhilnvl φG=*R
15 1 2 3 4 hlhildrng φRDivRing
16 drngring RDivRingRRing
17 15 16 syl φRRing
18 3 adantr φxBKHLWH
19 simpr φxBxB
20 1 5 6 7 10 18 19 hgmapcl φxBGxB
21 3 3ad2ant1 φxByBKHLWH
22 simp2 φxByBxB
23 simp3 φxByByB
24 1 5 6 7 8 10 21 22 23 hgmapadd φxByBGx+˙y=Gx+˙Gy
25 1 5 6 7 9 10 21 22 23 hgmapmul φxByBGx·˙y=Gy·˙Gx
26 1 5 6 7 10 18 19 hgmapvv φxBGGx=x
27 11 12 13 14 17 20 24 25 26 issrngd φR*-Ring