Metamath Proof Explorer


Theorem hoimbl

Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses hoimbl.x φ X Fin
hoimbl.s S = dom voln X
hoimbl.a φ A : X
hoimbl.b φ B : X
Assertion hoimbl φ i X A i B i S

Proof

Step Hyp Ref Expression
1 hoimbl.x φ X Fin
2 hoimbl.s S = dom voln X
3 hoimbl.a φ A : X
4 hoimbl.b φ B : X
5 1 adantr φ X = X Fin
6 5 rrnmbl φ X = X dom voln X
7 reex V
8 mapdm0 V =
9 7 8 ax-mp =
10 9 eqcomi =
11 10 a1i X = =
12 id X = X =
13 12 ixpeq1d X = i X A i B i = i A i B i
14 ixp0x i A i B i =
15 14 a1i X = i A i B i =
16 13 15 eqtrd X = i X A i B i =
17 oveq2 X = X =
18 11 16 17 3eqtr4d X = i X A i B i = X
19 18 adantl φ X = i X A i B i = X
20 2 a1i φ X = S = dom voln X
21 19 20 eleq12d φ X = i X A i B i S X dom voln X
22 6 21 mpbird φ X = i X A i B i S
23 1 adantr φ ¬ X = X Fin
24 12 necon3bi ¬ X = X
25 24 adantl φ ¬ X = X
26 3 adantr φ ¬ X = A : X
27 4 adantr φ ¬ X = B : X
28 id w = x w = x
29 eqidd w = x =
30 28 ixpeq1d w = x j w if j = h −∞ z = j x if j = h −∞ z
31 eqeq1 j = i j = h i = h
32 31 ifbid j = i if j = h −∞ z = if i = h −∞ z
33 32 cbvixpv j x if j = h −∞ z = i x if i = h −∞ z
34 33 a1i w = x j x if j = h −∞ z = i x if i = h −∞ z
35 30 34 eqtrd w = x j w if j = h −∞ z = i x if i = h −∞ z
36 28 29 35 mpoeq123dv w = x h w , z j w if j = h −∞ z = h x , z i x if i = h −∞ z
37 eqeq2 h = l i = h i = l
38 37 ifbid h = l if i = h −∞ z = if i = l −∞ z
39 38 ixpeq2dv h = l i x if i = h −∞ z = i x if i = l −∞ z
40 oveq2 z = y −∞ z = −∞ y
41 40 ifeq1d z = y if i = l −∞ z = if i = l −∞ y
42 41 ixpeq2dv z = y i x if i = l −∞ z = i x if i = l −∞ y
43 39 42 cbvmpov h x , z i x if i = h −∞ z = l x , y i x if i = l −∞ y
44 43 a1i w = x h x , z i x if i = h −∞ z = l x , y i x if i = l −∞ y
45 36 44 eqtrd w = x h w , z j w if j = h −∞ z = l x , y i x if i = l −∞ y
46 45 cbvmptv w Fin h w , z j w if j = h −∞ z = x Fin l x , y i x if i = l −∞ y
47 23 25 2 26 27 46 hoimbllem φ ¬ X = i X A i B i S
48 22 47 pm2.61dan φ i X A i B i S