Metamath Proof Explorer


Theorem hoimbl2

Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses hoimbl2.k k φ
hoimbl2.x φ X Fin
hoimbl2.s S = dom voln X
hoimbl2.a φ k X A
hoimbl2.b φ k X B
Assertion hoimbl2 φ k X A B S

Proof

Step Hyp Ref Expression
1 hoimbl2.k k φ
2 hoimbl2.x φ X Fin
3 hoimbl2.s S = dom voln X
4 hoimbl2.a φ k X A
5 hoimbl2.b φ k X B
6 simpr φ j X j X
7 nfv k j X
8 1 7 nfan k φ j X
9 nfcsb1v _ k j / k A
10 nfcv _ k
11 9 10 nfel k j / k A
12 8 11 nfim k φ j X j / k A
13 eleq1w k = j k X j X
14 13 anbi2d k = j φ k X φ j X
15 csbeq1a k = j A = j / k A
16 15 eleq1d k = j A j / k A
17 14 16 imbi12d k = j φ k X A φ j X j / k A
18 12 17 4 chvarfv φ j X j / k A
19 nfcv _ k j
20 19 nfcsb1 _ k j / k A
21 eqid k X A = k X A
22 19 20 15 21 fvmptf j X j / k A k X A j = j / k A
23 6 18 22 syl2anc φ j X k X A j = j / k A
24 19 nfcsb1 _ k j / k B
25 24 10 nfel k j / k B
26 8 25 nfim k φ j X j / k B
27 csbeq1a k = j B = j / k B
28 27 eleq1d k = j B j / k B
29 14 28 imbi12d k = j φ k X B φ j X j / k B
30 26 29 5 chvarfv φ j X j / k B
31 eqid k X B = k X B
32 19 24 27 31 fvmptf j X j / k B k X B j = j / k B
33 6 30 32 syl2anc φ j X k X B j = j / k B
34 23 33 oveq12d φ j X k X A j k X B j = j / k A j / k B
35 34 ixpeq2dva φ j X k X A j k X B j = j X j / k A j / k B
36 nfcv _ j A B
37 nfcv _ k .
38 9 37 24 nfov _ k j / k A j / k B
39 15 27 oveq12d k = j A B = j / k A j / k B
40 36 38 39 cbvixp k X A B = j X j / k A j / k B
41 40 eqcomi j X j / k A j / k B = k X A B
42 41 a1i φ j X j / k A j / k B = k X A B
43 35 42 eqtr2d φ k X A B = j X k X A j k X B j
44 1 4 21 fmptdf φ k X A : X
45 1 5 31 fmptdf φ k X B : X
46 2 3 44 45 hoimbl φ j X k X A j k X B j S
47 43 46 eqeltrd φ k X A B S