| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 |  | 
						
							| 2 |  | simpl3 |  | 
						
							| 3 |  | simpr |  | 
						
							| 4 |  | homval |  | 
						
							| 5 | 1 2 3 4 | syl3anc |  | 
						
							| 6 | 5 | fveq2d |  | 
						
							| 7 |  | homulcl |  | 
						
							| 8 | 7 | 3adant2 |  | 
						
							| 9 |  | fvco3 |  | 
						
							| 10 | 8 9 | sylan |  | 
						
							| 11 |  | fvco3 |  | 
						
							| 12 | 2 3 11 | syl2anc |  | 
						
							| 13 | 12 | oveq2d |  | 
						
							| 14 |  | lnopf |  | 
						
							| 15 | 14 | 3ad2ant2 |  | 
						
							| 16 |  | simp3 |  | 
						
							| 17 |  | fco |  | 
						
							| 18 | 15 16 17 | syl2anc |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 |  | homval |  | 
						
							| 21 | 1 19 3 20 | syl3anc |  | 
						
							| 22 |  | simpl2 |  | 
						
							| 23 | 16 | ffvelcdmda |  | 
						
							| 24 |  | lnopmul |  | 
						
							| 25 | 22 1 23 24 | syl3anc |  | 
						
							| 26 | 13 21 25 | 3eqtr4d |  | 
						
							| 27 | 6 10 26 | 3eqtr4d |  | 
						
							| 28 | 27 | ralrimiva |  | 
						
							| 29 |  | fco |  | 
						
							| 30 | 15 8 29 | syl2anc |  | 
						
							| 31 |  | simp1 |  | 
						
							| 32 |  | homulcl |  | 
						
							| 33 | 31 18 32 | syl2anc |  | 
						
							| 34 |  | hoeq |  | 
						
							| 35 | 30 33 34 | syl2anc |  | 
						
							| 36 | 28 35 | mpbid |  |