Metamath Proof Explorer


Theorem i1f0

Description: The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion i1f0 ×0dom1

Proof

Step Hyp Ref Expression
1 0re 0
2 1 fconst6 ×0:
3 2 a1i ×0:
4 snfi 0Fin
5 rnxpss ran×00
6 ssfi 0Finran×00ran×0Fin
7 4 5 6 mp2an ran×0Fin
8 7 a1i ran×0Fin
9 difss ran×00ran×0
10 9 5 sstri ran×000
11 10 sseli xran×00x0
12 11 adantl xran×00x0
13 eldifn xran×00¬x0
14 13 adantl xran×00¬x0
15 12 14 pm2.21dd xran×00×0-1xdomvol
16 12 14 pm2.21dd xran×00vol×0-1x
17 3 8 15 16 i1fd ×0dom1
18 17 mptru ×0dom1