Metamath Proof Explorer


Theorem iblpos

Description: Integrability of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses iblrelem.1 φxAB
iblpos.2 φxA0B
Assertion iblpos φxAB𝐿1xABMblFn2xifxAB0

Proof

Step Hyp Ref Expression
1 iblrelem.1 φxAB
2 iblpos.2 φxA0B
3 1 iblrelem φxAB𝐿1xABMblFn2xifxA0BB02xifxA0BB0
4 df-3an xABMblFn2xifxA0BB02xifxA0BB0xABMblFn2xifxA0BB02xifxA0BB0
5 3 4 bitrdi φxAB𝐿1xABMblFn2xifxA0BB02xifxA0BB0
6 1 2 iblposlem φ2xifxA0BB0=0
7 0re 0
8 6 7 eqeltrdi φ2xifxA0BB0
9 8 biantrud φxABMblFn2xifxA0BB0xABMblFn2xifxA0BB02xifxA0BB0
10 2 ex φxA0B
11 10 pm4.71rd φxA0BxA
12 ancom 0BxAxA0B
13 11 12 bitr2di φxA0BxA
14 13 ifbid φifxA0BB0=ifxAB0
15 14 mpteq2dv φxifxA0BB0=xifxAB0
16 15 fveq2d φ2xifxA0BB0=2xifxAB0
17 16 eleq1d φ2xifxA0BB02xifxAB0
18 17 anbi2d φxABMblFn2xifxA0BB0xABMblFn2xifxAB0
19 5 9 18 3bitr2d φxAB𝐿1xABMblFn2xifxAB0