Description: An open interval is the closed interval without the bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | iccdifprioo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prunioo | |
|
2 | 1 | eqcomd | |
3 | 2 | difeq1d | |
4 | difun2 | |
|
5 | iooinlbub | |
|
6 | disj3 | |
|
7 | 5 6 | mpbi | |
8 | 4 7 | eqtr4i | |
9 | 3 8 | eqtrdi | |
10 | 9 | 3expa | |
11 | difssd | |
|
12 | simpr | |
|
13 | xrlenlt | |
|
14 | 13 | adantr | |
15 | 12 14 | mtbid | |
16 | 15 | notnotrd | |
17 | icc0 | |
|
18 | 17 | adantr | |
19 | 16 18 | mpbird | |
20 | 11 19 | sseqtrd | |
21 | ss0 | |
|
22 | 20 21 | syl | |
23 | simplr | |
|
24 | simpll | |
|
25 | 23 24 16 | xrltled | |
26 | ioo0 | |
|
27 | 26 | adantr | |
28 | 25 27 | mpbird | |
29 | 22 28 | eqtr4d | |
30 | 10 29 | pm2.61dan | |