Metamath Proof Explorer


Theorem iccdifprioo

Description: An open interval is the closed interval without the bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iccdifprioo A*B*ABAB=AB

Proof

Step Hyp Ref Expression
1 prunioo A*B*ABABAB=AB
2 1 eqcomd A*B*ABAB=ABAB
3 2 difeq1d A*B*ABABAB=ABABAB
4 difun2 ABABAB=ABAB
5 iooinlbub ABAB=
6 disj3 ABAB=AB=ABAB
7 5 6 mpbi AB=ABAB
8 4 7 eqtr4i ABABAB=AB
9 3 8 eqtrdi A*B*ABABAB=AB
10 9 3expa A*B*ABABAB=AB
11 difssd A*B*¬ABABABAB
12 simpr A*B*¬AB¬AB
13 xrlenlt A*B*AB¬B<A
14 13 adantr A*B*¬ABAB¬B<A
15 12 14 mtbid A*B*¬AB¬¬B<A
16 15 notnotrd A*B*¬ABB<A
17 icc0 A*B*AB=B<A
18 17 adantr A*B*¬ABAB=B<A
19 16 18 mpbird A*B*¬ABAB=
20 11 19 sseqtrd A*B*¬ABABAB
21 ss0 ABABABAB=
22 20 21 syl A*B*¬ABABAB=
23 simplr A*B*¬ABB*
24 simpll A*B*¬ABA*
25 23 24 16 xrltled A*B*¬ABBA
26 ioo0 A*B*AB=BA
27 26 adantr A*B*¬ABAB=BA
28 25 27 mpbird A*B*¬ABAB=
29 22 28 eqtr4d A*B*¬ABABAB=AB
30 10 29 pm2.61dan A*B*ABAB=AB