Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iccdil.1 | |
|
iccdil.2 | |
||
Assertion | iccdil | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccdil.1 | |
|
2 | iccdil.2 | |
|
3 | simpl | |
|
4 | rpre | |
|
5 | remulcl | |
|
6 | 4 5 | sylan2 | |
7 | 3 6 | 2thd | |
8 | 7 | adantl | |
9 | elrp | |
|
10 | lemul1 | |
|
11 | 9 10 | syl3an3b | |
12 | 11 | 3expb | |
13 | 12 | adantlr | |
14 | 1 | breq1i | |
15 | 13 14 | bitrdi | |
16 | lemul1 | |
|
17 | 9 16 | syl3an3b | |
18 | 17 | 3expb | |
19 | 18 | an12s | |
20 | 19 | adantll | |
21 | 2 | breq2i | |
22 | 20 21 | bitrdi | |
23 | 8 15 22 | 3anbi123d | |
24 | elicc2 | |
|
25 | 24 | adantr | |
26 | remulcl | |
|
27 | 1 26 | eqeltrrid | |
28 | remulcl | |
|
29 | 2 28 | eqeltrrid | |
30 | elicc2 | |
|
31 | 27 29 30 | syl2an | |
32 | 31 | anandirs | |
33 | 4 32 | sylan2 | |
34 | 33 | adantrl | |
35 | 23 25 34 | 3bitr4d | |