Metamath Proof Explorer


Theorem iccdil

Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses iccdil.1 AR=C
iccdil.2 BR=D
Assertion iccdil ABXR+XABXRCD

Proof

Step Hyp Ref Expression
1 iccdil.1 AR=C
2 iccdil.2 BR=D
3 simpl XR+X
4 rpre R+R
5 remulcl XRXR
6 4 5 sylan2 XR+XR
7 3 6 2thd XR+XXR
8 7 adantl ABXR+XXR
9 elrp R+R0<R
10 lemul1 AXR0<RAXARXR
11 9 10 syl3an3b AXR+AXARXR
12 11 3expb AXR+AXARXR
13 12 adantlr ABXR+AXARXR
14 1 breq1i ARXRCXR
15 13 14 bitrdi ABXR+AXCXR
16 lemul1 XBR0<RXBXRBR
17 9 16 syl3an3b XBR+XBXRBR
18 17 3expb XBR+XBXRBR
19 18 an12s BXR+XBXRBR
20 19 adantll ABXR+XBXRBR
21 2 breq2i XRBRXRD
22 20 21 bitrdi ABXR+XBXRD
23 8 15 22 3anbi123d ABXR+XAXXBXRCXRXRD
24 elicc2 ABXABXAXXB
25 24 adantr ABXR+XABXAXXB
26 remulcl ARAR
27 1 26 eqeltrrid ARC
28 remulcl BRBR
29 2 28 eqeltrrid BRD
30 elicc2 CDXRCDXRCXRXRD
31 27 29 30 syl2an ARBRXRCDXRCXRXRD
32 31 anandirs ABRXRCDXRCXRXRD
33 4 32 sylan2 ABR+XRCDXRCXRXRD
34 33 adantrl ABXR+XRCDXRCXRXRD
35 23 25 34 3bitr4d ABXR+XABXRCD