Metamath Proof Explorer


Theorem iccneg

Description: Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007)

Ref Expression
Assertion iccneg ABCCABCBA

Proof

Step Hyp Ref Expression
1 renegcl CC
2 ax-1 CCC
3 1 2 impbid2 CCC
4 3 3ad2ant3 ABCCC
5 ancom CBACACCB
6 leneg CBCBBC
7 6 ancoms BCCBBC
8 7 3adant1 ABCCBBC
9 leneg ACACCA
10 9 3adant2 ABCACCA
11 8 10 anbi12d ABCCBACBCCA
12 5 11 bitr3id ABCACCBBCCA
13 4 12 anbi12d ABCCACCBCBCCA
14 elicc2 ABCABCACCB
15 14 3adant3 ABCCABCACCB
16 3anass CACCBCACCB
17 15 16 bitrdi ABCCABCACCB
18 renegcl BB
19 renegcl AA
20 elicc2 BACBACBCCA
21 18 19 20 syl2anr ABCBACBCCA
22 21 3adant3 ABCCBACBCCA
23 3anass CBCCACBCCA
24 22 23 bitrdi ABCCBACBCCA
25 13 17 24 3bitr4d ABCCABCBA