Metamath Proof Explorer


Theorem iccpartgtprec

Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φM
iccpartgtprec.p φPRePartM
iccpartgtprec.i φI1M
Assertion iccpartgtprec φPI1<PI

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φM
2 iccpartgtprec.p φPRePartM
3 iccpartgtprec.i φI1M
4 1 nnzd φM
5 fzval3 M1M=1..^M+1
6 5 eleq2d MI1MI1..^M+1
7 4 6 syl φI1MI1..^M+1
8 3 7 mpbid φI1..^M+1
9 1 nncnd φM
10 pncan1 MM+1-1=M
11 9 10 syl φM+1-1=M
12 11 eqcomd φM=M+1-1
13 12 oveq2d φ0..^M=0..^M+1-1
14 13 eleq2d φI10..^MI10..^M+1-1
15 3 elfzelzd φI
16 4 peano2zd φM+1
17 elfzom1b IM+1I1..^M+1I10..^M+1-1
18 15 16 17 syl2anc φI1..^M+1I10..^M+1-1
19 14 18 bitr4d φI10..^MI1..^M+1
20 8 19 mpbird φI10..^M
21 iccpartimp MPRePartMI10..^MP*0MPI1<PI-1+1
22 1 2 20 21 syl3anc φP*0MPI1<PI-1+1
23 22 simprd φPI1<PI-1+1
24 15 zcnd φI
25 npcan1 II-1+1=I
26 24 25 syl φI-1+1=I
27 26 eqcomd φI=I-1+1
28 27 fveq2d φPI=PI-1+1
29 23 28 breqtrrd φPI1<PI