Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iccpartgtprec.m | |
|
iccpartgtprec.p | |
||
iccpartgtprec.i | |
||
Assertion | iccpartgtprec | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | |
|
2 | iccpartgtprec.p | |
|
3 | iccpartgtprec.i | |
|
4 | 1 | nnzd | |
5 | fzval3 | |
|
6 | 5 | eleq2d | |
7 | 4 6 | syl | |
8 | 3 7 | mpbid | |
9 | 1 | nncnd | |
10 | pncan1 | |
|
11 | 9 10 | syl | |
12 | 11 | eqcomd | |
13 | 12 | oveq2d | |
14 | 13 | eleq2d | |
15 | 3 | elfzelzd | |
16 | 4 | peano2zd | |
17 | elfzom1b | |
|
18 | 15 16 17 | syl2anc | |
19 | 14 18 | bitr4d | |
20 | 8 19 | mpbird | |
21 | iccpartimp | |
|
22 | 1 2 20 21 | syl3anc | |
23 | 22 | simprd | |
24 | 15 | zcnd | |
25 | npcan1 | |
|
26 | 24 25 | syl | |
27 | 26 | eqcomd | |
28 | 27 | fveq2d | |
29 | 23 28 | breqtrrd | |