Metamath Proof Explorer


Theorem ich2exprop

Description: If the setvar variables are interchangeable in a wff, there is an ordered pair fulfilling the wff iff there is an unordered pair fulfilling the wff. (Contributed by AV, 16-Jul-2023)

Ref Expression
Assertion ich2exprop AXBXabφabAB=abφabAB=abφ

Proof

Step Hyp Ref Expression
1 nfv aAX
2 nfv aBX
3 nfich1 aabφ
4 1 2 3 nf3an aAXBXabφ
5 nfv aAB=xy
6 nfcv _ay
7 nfsbc1v a[˙x/a]˙φ
8 6 7 nfsbcw a[˙y/b]˙[˙x/a]˙φ
9 5 8 nfan aAB=xy[˙y/b]˙[˙x/a]˙φ
10 9 nfex ayAB=xy[˙y/b]˙[˙x/a]˙φ
11 10 nfex axyAB=xy[˙y/b]˙[˙x/a]˙φ
12 nfv bAX
13 nfv bBX
14 nfich2 babφ
15 12 13 14 nf3an bAXBXabφ
16 nfv bAB=xy
17 nfsbc1v b[˙y/b]˙[˙x/a]˙φ
18 16 17 nfan bAB=xy[˙y/b]˙[˙x/a]˙φ
19 18 nfex byAB=xy[˙y/b]˙[˙x/a]˙φ
20 19 nfex bxyAB=xy[˙y/b]˙[˙x/a]˙φ
21 vex aV
22 vex bV
23 preq12bg AXBXaVbVAB=abA=aB=bA=bB=a
24 21 22 23 mpanr12 AXBXAB=abA=aB=bA=bB=a
25 24 3adant3 AXBXabφAB=abA=aB=bA=bB=a
26 or2expropbilem1 AXBXA=aB=bφxyAB=xy[˙y/b]˙[˙x/a]˙φ
27 26 3adant3 AXBXabφA=aB=bφxyAB=xy[˙y/b]˙[˙x/a]˙φ
28 ichcom abφbaφ
29 28 biimpi abφbaφ
30 29 3ad2ant3 AXBXabφbaφ
31 30 adantr AXBXabφφbaφ
32 22 21 pm3.2i bVaV
33 32 a1i A=bB=abVaV
34 31 33 anim12i AXBXabφφA=bB=abaφbVaV
35 simpr AXBXabφφφ
36 opeq12 A=bB=aAB=ba
37 35 36 anim12ci AXBXabφφA=bB=aAB=baφ
38 nfv xAB=baφ
39 nfv yAB=baφ
40 opeq12 x=by=axy=ba
41 40 eqeq2d x=by=aAB=xyAB=ba
42 41 adantl baφx=by=aAB=xyAB=ba
43 dfsbcq y=a[˙y/b]˙[˙x/a]˙φ[˙a/b]˙[˙x/a]˙φ
44 43 adantl x=by=a[˙y/b]˙[˙x/a]˙φ[˙a/b]˙[˙x/a]˙φ
45 44 adantl baφx=by=a[˙y/b]˙[˙x/a]˙φ[˙a/b]˙[˙x/a]˙φ
46 sbceq1a x=b[˙a/b]˙[˙x/a]˙φ[˙b/x]˙[˙a/b]˙[˙x/a]˙φ
47 46 adantr x=by=a[˙a/b]˙[˙x/a]˙φ[˙b/x]˙[˙a/b]˙[˙x/a]˙φ
48 df-ich baφbabxabxaφφ
49 sbsbc bxabxaφ[˙b/x]˙abxaφ
50 sbsbc abxaφ[˙a/b]˙xaφ
51 sbsbc xaφ[˙x/a]˙φ
52 51 sbcbii [˙a/b]˙xaφ[˙a/b]˙[˙x/a]˙φ
53 50 52 bitri abxaφ[˙a/b]˙[˙x/a]˙φ
54 53 sbcbii [˙b/x]˙abxaφ[˙b/x]˙[˙a/b]˙[˙x/a]˙φ
55 49 54 bitri bxabxaφ[˙b/x]˙[˙a/b]˙[˙x/a]˙φ
56 2sp babxabxaφφbxabxaφφ
57 55 56 bitr3id babxabxaφφ[˙b/x]˙[˙a/b]˙[˙x/a]˙φφ
58 48 57 sylbi baφ[˙b/x]˙[˙a/b]˙[˙x/a]˙φφ
59 47 58 sylan9bbr baφx=by=a[˙a/b]˙[˙x/a]˙φφ
60 45 59 bitrd baφx=by=a[˙y/b]˙[˙x/a]˙φφ
61 42 60 anbi12d baφx=by=aAB=xy[˙y/b]˙[˙x/a]˙φAB=baφ
62 38 39 61 spc2ed baφbVaVAB=baφxyAB=xy[˙y/b]˙[˙x/a]˙φ
63 34 37 62 sylc AXBXabφφA=bB=axyAB=xy[˙y/b]˙[˙x/a]˙φ
64 63 exp31 AXBXabφφA=bB=axyAB=xy[˙y/b]˙[˙x/a]˙φ
65 64 com23 AXBXabφA=bB=aφxyAB=xy[˙y/b]˙[˙x/a]˙φ
66 27 65 jaod AXBXabφA=aB=bA=bB=aφxyAB=xy[˙y/b]˙[˙x/a]˙φ
67 25 66 sylbid AXBXabφAB=abφxyAB=xy[˙y/b]˙[˙x/a]˙φ
68 67 impd AXBXabφAB=abφxyAB=xy[˙y/b]˙[˙x/a]˙φ
69 15 20 68 exlimd AXBXabφbAB=abφxyAB=xy[˙y/b]˙[˙x/a]˙φ
70 4 11 69 exlimd AXBXabφabAB=abφxyAB=xy[˙y/b]˙[˙x/a]˙φ
71 or2expropbilem2 abAB=abφxyAB=xy[˙y/b]˙[˙x/a]˙φ
72 70 71 imbitrrdi AXBXabφabAB=abφabAB=abφ
73 oppr AXBXAB=abAB=ab
74 73 anim1d AXBXAB=abφAB=abφ
75 74 2eximdv AXBXabAB=abφabAB=abφ
76 75 3adant3 AXBXabφabAB=abφabAB=abφ
77 72 76 impbid AXBXabφabAB=abφabAB=abφ