Metamath Proof Explorer


Theorem icoiccdif

Description: Left-closed right-open interval gotten by a closed iterval taking away the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion icoiccdif A*B*AB=ABB

Proof

Step Hyp Ref Expression
1 icossicc ABAB
2 1 a1i A*B*ABAB
3 2 sselda A*B*xABxAB
4 elico1 A*B*xABx*Axx<B
5 4 biimpa A*B*xABx*Axx<B
6 5 simp1d A*B*xABx*
7 simplr A*B*xABB*
8 5 simp3d A*B*xABx<B
9 xrltne x*B*x<BBx
10 6 7 8 9 syl3anc A*B*xABBx
11 10 necomd A*B*xABxB
12 11 neneqd A*B*xAB¬x=B
13 velsn xBx=B
14 12 13 sylnibr A*B*xAB¬xB
15 3 14 eldifd A*B*xABxABB
16 15 ex A*B*xABxABB
17 16 ssrdv A*B*ABABB
18 simpll A*B*xABBA*
19 simplr A*B*xABBB*
20 eldifi xABBxAB
21 eliccxr xABx*
22 20 21 syl xABBx*
23 22 adantl A*B*xABBx*
24 20 adantl A*B*xABBxAB
25 elicc1 A*B*xABx*AxxB
26 25 adantr A*B*xABBxABx*AxxB
27 24 26 mpbid A*B*xABBx*AxxB
28 27 simp2d A*B*xABBAx
29 eldifsni xABBxB
30 29 necomd xABBBx
31 30 adantl A*B*xABBBx
32 27 simp3d A*B*xABBxB
33 xrleltne x*B*xBx<BBx
34 23 19 32 33 syl3anc A*B*xABBx<BBx
35 31 34 mpbird A*B*xABBx<B
36 18 19 23 28 35 elicod A*B*xABBxAB
37 17 36 eqelssd A*B*AB=ABB