Metamath Proof Explorer


Theorem idlsrgmulrss2

Description: The product of two ideals is a subset of the second one. (Contributed by Thierry Arnoux, 2-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrss2.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrgmulrss2.2 B=LIdealR
idlsrgmulrss2.3 ˙=S
idlsrgmulrss2.5 ·˙=R
idlsrgmulrss2.6 φRRing
idlsrgmulrss2.7 φIB
idlsrgmulrss2.8 φJB
Assertion idlsrgmulrss2 φI˙JJ

Proof

Step Hyp Ref Expression
1 idlsrgmulrss2.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrgmulrss2.2 B=LIdealR
3 idlsrgmulrss2.3 ˙=S
4 idlsrgmulrss2.5 ·˙=R
5 idlsrgmulrss2.6 φRRing
6 idlsrgmulrss2.7 φIB
7 idlsrgmulrss2.8 φJB
8 eqid mulGrpR=mulGrpR
9 eqid LSSummulGrpR=LSSummulGrpR
10 1 2 3 8 9 5 6 7 idlsrgmulrval φI˙J=RSpanRILSSummulGrpRJ
11 rlmlmod RRingringLModRLMod
12 5 11 syl φringLModRLMod
13 eqid BaseR=BaseR
14 13 2 lidlss JBJBaseR
15 7 14 syl φJBaseR
16 13 2 lidlss IBIBaseR
17 6 16 syl φIBaseR
18 7 2 eleqtrdi φJLIdealR
19 13 8 9 5 17 18 ringlsmss2 φILSSummulGrpRJJ
20 rlmbas BaseR=BaseringLModR
21 rspval RSpanR=LSpanringLModR
22 20 21 lspss ringLModRLModJBaseRILSSummulGrpRJJRSpanRILSSummulGrpRJRSpanRJ
23 12 15 19 22 syl3anc φRSpanRILSSummulGrpRJRSpanRJ
24 eqid RSpanR=RSpanR
25 24 2 rspidlid RRingJBRSpanRJ=J
26 5 7 25 syl2anc φRSpanRJ=J
27 23 26 sseqtrd φRSpanRILSSummulGrpRJJ
28 10 27 eqsstrd φI˙JJ