Description: The product of two ideals is a subset of the second one. (Contributed by Thierry Arnoux, 2-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | idlsrgmulrss2.1 | No typesetting found for |- S = ( IDLsrg ` R ) with typecode |- | |
idlsrgmulrss2.2 | |
||
idlsrgmulrss2.3 | |
||
idlsrgmulrss2.5 | |
||
idlsrgmulrss2.6 | |
||
idlsrgmulrss2.7 | |
||
idlsrgmulrss2.8 | |
||
Assertion | idlsrgmulrss2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsrgmulrss2.1 | Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |- | |
2 | idlsrgmulrss2.2 | |
|
3 | idlsrgmulrss2.3 | |
|
4 | idlsrgmulrss2.5 | |
|
5 | idlsrgmulrss2.6 | |
|
6 | idlsrgmulrss2.7 | |
|
7 | idlsrgmulrss2.8 | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 1 2 3 8 9 5 6 7 | idlsrgmulrval | |
11 | rlmlmod | |
|
12 | 5 11 | syl | |
13 | eqid | |
|
14 | 13 2 | lidlss | |
15 | 7 14 | syl | |
16 | 13 2 | lidlss | |
17 | 6 16 | syl | |
18 | 7 2 | eleqtrdi | |
19 | 13 8 9 5 17 18 | ringlsmss2 | |
20 | rlmbas | |
|
21 | rspval | |
|
22 | 20 21 | lspss | |
23 | 12 15 19 22 | syl3anc | |
24 | eqid | |
|
25 | 24 2 | rspidlid | |
26 | 5 7 25 | syl2anc | |
27 | 23 26 | sseqtrd | |
28 | 10 27 | eqsstrd | |