Metamath Proof Explorer


Theorem idmhm

Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020)

Ref Expression
Hypothesis idmhm.b B=BaseM
Assertion idmhm MMndIBMMndHomM

Proof

Step Hyp Ref Expression
1 idmhm.b B=BaseM
2 id MMndMMnd
3 f1oi IB:B1-1 ontoB
4 f1of IB:B1-1 ontoBIB:BB
5 3 4 mp1i MMndIB:BB
6 eqid +M=+M
7 1 6 mndcl MMndaBbBa+MbB
8 7 3expb MMndaBbBa+MbB
9 fvresi a+MbBIBa+Mb=a+Mb
10 8 9 syl MMndaBbBIBa+Mb=a+Mb
11 fvresi aBIBa=a
12 fvresi bBIBb=b
13 11 12 oveqan12d aBbBIBa+MIBb=a+Mb
14 13 adantl MMndaBbBIBa+MIBb=a+Mb
15 10 14 eqtr4d MMndaBbBIBa+Mb=IBa+MIBb
16 15 ralrimivva MMndaBbBIBa+Mb=IBa+MIBb
17 eqid 0M=0M
18 1 17 mndidcl MMnd0MB
19 fvresi 0MBIB0M=0M
20 18 19 syl MMndIB0M=0M
21 5 16 20 3jca MMndIB:BBaBbBIBa+Mb=IBa+MIBbIB0M=0M
22 1 1 6 6 17 17 ismhm IBMMndHomMMMndMMndIB:BBaBbBIBa+Mb=IBa+MIBbIB0M=0M
23 2 2 21 22 syl21anbrc MMndIBMMndHomM