| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhmf1o.b |
|
| 2 |
|
mhmf1o.c |
|
| 3 |
|
mhmrcl2 |
|
| 4 |
|
mhmrcl1 |
|
| 5 |
3 4
|
jca |
|
| 6 |
5
|
adantr |
|
| 7 |
|
f1ocnv |
|
| 8 |
7
|
adantl |
|
| 9 |
|
f1of |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
simpll |
|
| 12 |
10
|
adantr |
|
| 13 |
|
simprl |
|
| 14 |
12 13
|
ffvelcdmd |
|
| 15 |
|
simprr |
|
| 16 |
12 15
|
ffvelcdmd |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
1 17 18
|
mhmlin |
|
| 20 |
11 14 16 19
|
syl3anc |
|
| 21 |
|
simpr |
|
| 22 |
21
|
adantr |
|
| 23 |
|
f1ocnvfv2 |
|
| 24 |
22 13 23
|
syl2anc |
|
| 25 |
|
f1ocnvfv2 |
|
| 26 |
22 15 25
|
syl2anc |
|
| 27 |
24 26
|
oveq12d |
|
| 28 |
20 27
|
eqtrd |
|
| 29 |
4
|
adantr |
|
| 30 |
29
|
adantr |
|
| 31 |
1 17
|
mndcl |
|
| 32 |
30 14 16 31
|
syl3anc |
|
| 33 |
|
f1ocnvfv |
|
| 34 |
22 32 33
|
syl2anc |
|
| 35 |
28 34
|
mpd |
|
| 36 |
35
|
ralrimivva |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
37 38
|
mhm0 |
|
| 40 |
39
|
adantr |
|
| 41 |
40
|
eqcomd |
|
| 42 |
41
|
fveq2d |
|
| 43 |
1 37
|
mndidcl |
|
| 44 |
4 43
|
syl |
|
| 45 |
44
|
adantr |
|
| 46 |
|
f1ocnvfv1 |
|
| 47 |
21 45 46
|
syl2anc |
|
| 48 |
42 47
|
eqtrd |
|
| 49 |
10 36 48
|
3jca |
|
| 50 |
2 1 18 17 38 37
|
ismhm |
|
| 51 |
6 49 50
|
sylanbrc |
|
| 52 |
1 2
|
mhmf |
|
| 53 |
52
|
adantr |
|
| 54 |
53
|
ffnd |
|
| 55 |
2 1
|
mhmf |
|
| 56 |
55
|
adantl |
|
| 57 |
56
|
ffnd |
|
| 58 |
|
dff1o4 |
|
| 59 |
54 57 58
|
sylanbrc |
|
| 60 |
51 59
|
impbida |
|