Description: A commutative ring is a star ring when the conjugate operation is the identity. (Contributed by Thierry Arnoux, 19-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | idsrngd.k | |
|
idsrngd.c | |
||
idsrngd.r | |
||
idsrngd.i | |
||
Assertion | idsrngd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idsrngd.k | |
|
2 | idsrngd.c | |
|
3 | idsrngd.r | |
|
4 | idsrngd.i | |
|
5 | 1 | a1i | |
6 | eqidd | |
|
7 | eqidd | |
|
8 | 2 | a1i | |
9 | crngring | |
|
10 | 3 9 | syl | |
11 | 4 | ralrimiva | |
12 | 11 | adantr | |
13 | simpr | |
|
14 | simpr | |
|
15 | 14 | fveq2d | |
16 | 15 14 | eqeq12d | |
17 | 13 16 | rspcdv | |
18 | 12 17 | mpd | |
19 | 18 13 | eqeltrd | |
20 | 11 | adantr | |
21 | 20 | 3adant2 | |
22 | ringgrp | |
|
23 | 10 22 | syl | |
24 | eqid | |
|
25 | 1 24 | grpcl | |
26 | 23 25 | syl3an1 | |
27 | simpr | |
|
28 | 27 | fveq2d | |
29 | 28 27 | eqeq12d | |
30 | 26 29 | rspcdv | |
31 | 21 30 | mpd | |
32 | 18 | 3adant3 | |
33 | simpr | |
|
34 | simpr | |
|
35 | 34 | fveq2d | |
36 | 35 34 | eqeq12d | |
37 | 33 36 | rspcdv | |
38 | 20 37 | mpd | |
39 | 38 | 3adant2 | |
40 | 32 39 | oveq12d | |
41 | 31 40 | eqtr4d | |
42 | eqid | |
|
43 | 1 42 | crngcom | |
44 | 3 43 | syl3an1 | |
45 | 1 42 | ringcl | |
46 | 10 45 | syl3an1 | |
47 | simpr | |
|
48 | 47 | fveq2d | |
49 | 48 47 | eqeq12d | |
50 | 46 49 | rspcdv | |
51 | 21 50 | mpd | |
52 | 39 32 | oveq12d | |
53 | 44 51 52 | 3eqtr4d | |
54 | 18 | fveq2d | |
55 | 54 18 | eqtrd | |
56 | 5 6 7 8 10 19 41 53 55 | issrngd | |