| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idsrngd.k |
|
| 2 |
|
idsrngd.c |
|
| 3 |
|
idsrngd.r |
|
| 4 |
|
idsrngd.i |
|
| 5 |
1
|
a1i |
|
| 6 |
|
eqidd |
|
| 7 |
|
eqidd |
|
| 8 |
2
|
a1i |
|
| 9 |
|
crngring |
|
| 10 |
3 9
|
syl |
|
| 11 |
4
|
ralrimiva |
|
| 12 |
11
|
adantr |
|
| 13 |
|
simpr |
|
| 14 |
|
simpr |
|
| 15 |
14
|
fveq2d |
|
| 16 |
15 14
|
eqeq12d |
|
| 17 |
13 16
|
rspcdv |
|
| 18 |
12 17
|
mpd |
|
| 19 |
18 13
|
eqeltrd |
|
| 20 |
11
|
adantr |
|
| 21 |
20
|
3adant2 |
|
| 22 |
|
ringgrp |
|
| 23 |
10 22
|
syl |
|
| 24 |
|
eqid |
|
| 25 |
1 24
|
grpcl |
|
| 26 |
23 25
|
syl3an1 |
|
| 27 |
|
simpr |
|
| 28 |
27
|
fveq2d |
|
| 29 |
28 27
|
eqeq12d |
|
| 30 |
26 29
|
rspcdv |
|
| 31 |
21 30
|
mpd |
|
| 32 |
18
|
3adant3 |
|
| 33 |
|
simpr |
|
| 34 |
|
simpr |
|
| 35 |
34
|
fveq2d |
|
| 36 |
35 34
|
eqeq12d |
|
| 37 |
33 36
|
rspcdv |
|
| 38 |
20 37
|
mpd |
|
| 39 |
38
|
3adant2 |
|
| 40 |
32 39
|
oveq12d |
|
| 41 |
31 40
|
eqtr4d |
|
| 42 |
|
eqid |
|
| 43 |
1 42
|
crngcom |
|
| 44 |
3 43
|
syl3an1 |
|
| 45 |
1 42
|
ringcl |
|
| 46 |
10 45
|
syl3an1 |
|
| 47 |
|
simpr |
|
| 48 |
47
|
fveq2d |
|
| 49 |
48 47
|
eqeq12d |
|
| 50 |
46 49
|
rspcdv |
|
| 51 |
21 50
|
mpd |
|
| 52 |
39 32
|
oveq12d |
|
| 53 |
44 51 52
|
3eqtr4d |
|
| 54 |
18
|
fveq2d |
|
| 55 |
54 18
|
eqtrd |
|
| 56 |
5 6 7 8 10 19 41 53 55
|
issrngd |
|