Metamath Proof Explorer


Theorem idsrngd

Description: A commutative ring is a star ring when the conjugate operation is the identity. (Contributed by Thierry Arnoux, 19-Apr-2019)

Ref Expression
Hypotheses idsrngd.k B=BaseR
idsrngd.c ˙=*R
idsrngd.r φRCRing
idsrngd.i φxB˙x=x
Assertion idsrngd φR*-Ring

Proof

Step Hyp Ref Expression
1 idsrngd.k B=BaseR
2 idsrngd.c ˙=*R
3 idsrngd.r φRCRing
4 idsrngd.i φxB˙x=x
5 1 a1i φB=BaseR
6 eqidd φ+R=+R
7 eqidd φR=R
8 2 a1i φ˙=*R
9 crngring RCRingRRing
10 3 9 syl φRRing
11 4 ralrimiva φxB˙x=x
12 11 adantr φaBxB˙x=x
13 simpr φaBaB
14 simpr φaBx=ax=a
15 14 fveq2d φaBx=a˙x=˙a
16 15 14 eqeq12d φaBx=a˙x=x˙a=a
17 13 16 rspcdv φaBxB˙x=x˙a=a
18 12 17 mpd φaB˙a=a
19 18 13 eqeltrd φaB˙aB
20 11 adantr φbBxB˙x=x
21 20 3adant2 φaBbBxB˙x=x
22 ringgrp RRingRGrp
23 10 22 syl φRGrp
24 eqid +R=+R
25 1 24 grpcl RGrpaBbBa+RbB
26 23 25 syl3an1 φaBbBa+RbB
27 simpr φaBbBx=a+Rbx=a+Rb
28 27 fveq2d φaBbBx=a+Rb˙x=˙a+Rb
29 28 27 eqeq12d φaBbBx=a+Rb˙x=x˙a+Rb=a+Rb
30 26 29 rspcdv φaBbBxB˙x=x˙a+Rb=a+Rb
31 21 30 mpd φaBbB˙a+Rb=a+Rb
32 18 3adant3 φaBbB˙a=a
33 simpr φbBbB
34 simpr φbBx=bx=b
35 34 fveq2d φbBx=b˙x=˙b
36 35 34 eqeq12d φbBx=b˙x=x˙b=b
37 33 36 rspcdv φbBxB˙x=x˙b=b
38 20 37 mpd φbB˙b=b
39 38 3adant2 φaBbB˙b=b
40 32 39 oveq12d φaBbB˙a+R˙b=a+Rb
41 31 40 eqtr4d φaBbB˙a+Rb=˙a+R˙b
42 eqid R=R
43 1 42 crngcom RCRingaBbBaRb=bRa
44 3 43 syl3an1 φaBbBaRb=bRa
45 1 42 ringcl RRingaBbBaRbB
46 10 45 syl3an1 φaBbBaRbB
47 simpr φaBbBx=aRbx=aRb
48 47 fveq2d φaBbBx=aRb˙x=˙aRb
49 48 47 eqeq12d φaBbBx=aRb˙x=x˙aRb=aRb
50 46 49 rspcdv φaBbBxB˙x=x˙aRb=aRb
51 21 50 mpd φaBbB˙aRb=aRb
52 39 32 oveq12d φaBbB˙bR˙a=bRa
53 44 51 52 3eqtr4d φaBbB˙aRb=˙bR˙a
54 18 fveq2d φaB˙˙a=˙a
55 54 18 eqtrd φaB˙˙a=a
56 5 6 7 8 10 19 41 53 55 issrngd φR*-Ring