Metamath Proof Explorer


Theorem ifeqeqx

Description: An equality theorem tailored for ballotlemsf1o . (Contributed by Thierry Arnoux, 14-Apr-2017)

Ref Expression
Hypotheses ifeqeqx.1 x=XA=C
ifeqeqx.2 x=YB=a
ifeqeqx.3 x=Xχθ
ifeqeqx.4 x=Yχψ
ifeqeqx.5 φa=C
ifeqeqx.6 φψθ
ifeqeqx.y φYV
ifeqeqx.x φXW
Assertion ifeqeqx φx=ifψXYa=ifχAB

Proof

Step Hyp Ref Expression
1 ifeqeqx.1 x=XA=C
2 ifeqeqx.2 x=YB=a
3 ifeqeqx.3 x=Xχθ
4 ifeqeqx.4 x=Yχψ
5 ifeqeqx.5 φa=C
6 ifeqeqx.6 φψθ
7 ifeqeqx.y φYV
8 ifeqeqx.x φXW
9 eqeq2 A=ifχABa=Aa=ifχAB
10 eqeq2 B=ifχABa=Ba=ifχAB
11 simplr φx=ifψXYχx=ifψXY
12 simpll φx=ifψXYχφ
13 simpr φx=ifψXYχχ
14 sbceq1a x=ifψXYχ[˙ifψXY/x]˙χ
15 14 biimpd x=ifψXYχ[˙ifψXY/x]˙χ
16 11 13 15 sylc φx=ifψXYχ[˙ifψXY/x]˙χ
17 dfsbcq X=ifψXY[˙X/x]˙χ[˙ifψXY/x]˙χ
18 csbeq1 X=ifψXYX/xA=ifψXY/xA
19 18 eqeq2d X=ifψXYa=X/xAa=ifψXY/xA
20 17 19 imbi12d X=ifψXY[˙X/x]˙χa=X/xA[˙ifψXY/x]˙χa=ifψXY/xA
21 dfsbcq Y=ifψXY[˙Y/x]˙χ[˙ifψXY/x]˙χ
22 csbeq1 Y=ifψXYY/xA=ifψXY/xA
23 22 eqeq2d Y=ifψXYa=Y/xAa=ifψXY/xA
24 21 23 imbi12d Y=ifψXY[˙Y/x]˙χa=Y/xA[˙ifψXY/x]˙χa=ifψXY/xA
25 nfcvd XW_xC
26 25 1 csbiegf XWX/xA=C
27 8 26 syl φX/xA=C
28 27 5 eqtr4d φX/xA=a
29 28 adantr φψX/xA=a
30 29 eqcomd φψa=X/xA
31 30 a1d φψ[˙X/x]˙χa=X/xA
32 pm3.24 ¬ψ¬ψ
33 4 sbcieg YV[˙Y/x]˙χψ
34 7 33 syl φ[˙Y/x]˙χψ
35 34 anbi1d φ[˙Y/x]˙χ¬ψψ¬ψ
36 32 35 mtbiri φ¬[˙Y/x]˙χ¬ψ
37 36 pm2.21d φ[˙Y/x]˙χ¬ψa=Y/xA
38 37 imp φ[˙Y/x]˙χ¬ψa=Y/xA
39 38 anass1rs φ¬ψ[˙Y/x]˙χa=Y/xA
40 39 ex φ¬ψ[˙Y/x]˙χa=Y/xA
41 20 24 31 40 ifbothda φ[˙ifψXY/x]˙χa=ifψXY/xA
42 12 16 41 sylc φx=ifψXYχa=ifψXY/xA
43 csbeq1a x=ifψXYA=ifψXY/xA
44 43 eqeq2d x=ifψXYa=Aa=ifψXY/xA
45 44 biimprd x=ifψXYa=ifψXY/xAa=A
46 11 42 45 sylc φx=ifψXYχa=A
47 simplr φx=ifψXY¬χx=ifψXY
48 simpll φx=ifψXY¬χφ
49 simpr φx=ifψXY¬χ¬χ
50 14 notbid x=ifψXY¬χ¬[˙ifψXY/x]˙χ
51 50 biimpd x=ifψXY¬χ¬[˙ifψXY/x]˙χ
52 47 49 51 sylc φx=ifψXY¬χ¬[˙ifψXY/x]˙χ
53 17 notbid X=ifψXY¬[˙X/x]˙χ¬[˙ifψXY/x]˙χ
54 csbeq1 X=ifψXYX/xB=ifψXY/xB
55 54 eqeq2d X=ifψXYa=X/xBa=ifψXY/xB
56 53 55 imbi12d X=ifψXY¬[˙X/x]˙χa=X/xB¬[˙ifψXY/x]˙χa=ifψXY/xB
57 21 notbid Y=ifψXY¬[˙Y/x]˙χ¬[˙ifψXY/x]˙χ
58 csbeq1 Y=ifψXYY/xB=ifψXY/xB
59 58 eqeq2d Y=ifψXYa=Y/xBa=ifψXY/xB
60 57 59 imbi12d Y=ifψXY¬[˙Y/x]˙χa=Y/xB¬[˙ifψXY/x]˙χa=ifψXY/xB
61 3 sbcieg XW[˙X/x]˙χθ
62 8 61 syl φ[˙X/x]˙χθ
63 62 notbid φ¬[˙X/x]˙χ¬θ
64 63 biimpd φ¬[˙X/x]˙χ¬θ
65 6 ex φψθ
66 64 65 nsyld φ¬[˙X/x]˙χ¬ψ
67 66 anim2d φψ¬[˙X/x]˙χψ¬ψ
68 32 67 mtoi φ¬ψ¬[˙X/x]˙χ
69 68 pm2.21d φψ¬[˙X/x]˙χa=X/xB
70 69 expdimp φψ¬[˙X/x]˙χa=X/xB
71 nfcvd YV_xa
72 71 2 csbiegf YVY/xB=a
73 7 72 syl φY/xB=a
74 73 adantr φ¬ψY/xB=a
75 74 eqcomd φ¬ψa=Y/xB
76 75 a1d φ¬ψ¬[˙Y/x]˙χa=Y/xB
77 56 60 70 76 ifbothda φ¬[˙ifψXY/x]˙χa=ifψXY/xB
78 48 52 77 sylc φx=ifψXY¬χa=ifψXY/xB
79 csbeq1a x=ifψXYB=ifψXY/xB
80 79 eqeq2d x=ifψXYa=Ba=ifψXY/xB
81 80 biimprd x=ifψXYa=ifψXY/xBa=B
82 47 78 81 sylc φx=ifψXY¬χa=B
83 9 10 46 82 ifbothda φx=ifψXYa=ifχAB