Description: A relabeling of the elements of a group induces an isomorphism to the relabeled group.MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015) (Revised by Mario Carneiro, 11-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | imasgim.u | |
|
imasgim.v | |
||
imasgim.f | |
||
imasgim.r | |
||
Assertion | imasgim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasgim.u | |
|
2 | imasgim.v | |
|
3 | imasgim.f | |
|
4 | imasgim.r | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqidd | |
|
10 | f1ofo | |
|
11 | 3 10 | syl | |
12 | 3 | f1ocpbl | |
13 | eqid | |
|
14 | 1 2 9 11 12 4 13 | imasgrp | |
15 | 14 | simpld | |
16 | 1 2 11 4 | imasbas | |
17 | f1oeq3 | |
|
18 | 16 17 | syl | |
19 | 3 18 | mpbid | |
20 | 2 | f1oeq2d | |
21 | 19 20 | mpbid | |
22 | f1of | |
|
23 | 21 22 | syl | |
24 | 2 | eleq2d | |
25 | 2 | eleq2d | |
26 | 24 25 | anbi12d | |
27 | 11 12 1 2 4 7 8 | imasaddval | |
28 | 27 | eqcomd | |
29 | 28 | 3expib | |
30 | 26 29 | sylbird | |
31 | 30 | imp | |
32 | 5 6 7 8 4 15 23 31 | isghmd | |
33 | 5 6 | isgim | |
34 | 32 21 33 | sylanbrc | |