Metamath Proof Explorer


Theorem imasgim

Description: A relabeling of the elements of a group induces an isomorphism to the relabeled group.MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015) (Revised by Mario Carneiro, 11-Aug-2015)

Ref Expression
Hypotheses imasgim.u φU=F𝑠R
imasgim.v φV=BaseR
imasgim.f φF:V1-1 ontoB
imasgim.r φRGrp
Assertion imasgim φFRGrpIsoU

Proof

Step Hyp Ref Expression
1 imasgim.u φU=F𝑠R
2 imasgim.v φV=BaseR
3 imasgim.f φF:V1-1 ontoB
4 imasgim.r φRGrp
5 eqid BaseR=BaseR
6 eqid BaseU=BaseU
7 eqid +R=+R
8 eqid +U=+U
9 eqidd φ+R=+R
10 f1ofo F:V1-1 ontoBF:VontoB
11 3 10 syl φF:VontoB
12 3 f1ocpbl φaVbVcVdVFa=FcFb=FdFa+Rb=Fc+Rd
13 eqid 0R=0R
14 1 2 9 11 12 4 13 imasgrp φUGrpF0R=0U
15 14 simpld φUGrp
16 1 2 11 4 imasbas φB=BaseU
17 f1oeq3 B=BaseUF:V1-1 ontoBF:V1-1 ontoBaseU
18 16 17 syl φF:V1-1 ontoBF:V1-1 ontoBaseU
19 3 18 mpbid φF:V1-1 ontoBaseU
20 2 f1oeq2d φF:V1-1 ontoBaseUF:BaseR1-1 ontoBaseU
21 19 20 mpbid φF:BaseR1-1 ontoBaseU
22 f1of F:BaseR1-1 ontoBaseUF:BaseRBaseU
23 21 22 syl φF:BaseRBaseU
24 2 eleq2d φaVaBaseR
25 2 eleq2d φbVbBaseR
26 24 25 anbi12d φaVbVaBaseRbBaseR
27 11 12 1 2 4 7 8 imasaddval φaVbVFa+UFb=Fa+Rb
28 27 eqcomd φaVbVFa+Rb=Fa+UFb
29 28 3expib φaVbVFa+Rb=Fa+UFb
30 26 29 sylbird φaBaseRbBaseRFa+Rb=Fa+UFb
31 30 imp φaBaseRbBaseRFa+Rb=Fa+UFb
32 5 6 7 8 4 15 23 31 isghmd φFRGrpHomU
33 5 6 isgim FRGrpIsoUFRGrpHomUF:BaseR1-1 ontoBaseU
34 32 21 33 sylanbrc φFRGrpIsoU