Metamath Proof Explorer


Theorem imsdval

Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of Kreyszig p. 59. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 27-Dec-2014) (New usage is discouraged.)

Ref Expression
Hypotheses imsdval.1 X=BaseSetU
imsdval.3 M=-vU
imsdval.6 N=normCVU
imsdval.8 D=IndMetU
Assertion imsdval UNrmCVecAXBXADB=NAMB

Proof

Step Hyp Ref Expression
1 imsdval.1 X=BaseSetU
2 imsdval.3 M=-vU
3 imsdval.6 N=normCVU
4 imsdval.8 D=IndMetU
5 2 3 4 imsval UNrmCVecD=NM
6 5 3ad2ant1 UNrmCVecAXBXD=NM
7 6 fveq1d UNrmCVecAXBXDAB=NMAB
8 1 2 nvmf UNrmCVecM:X×XX
9 opelxpi AXBXABX×X
10 fvco3 M:X×XXABX×XNMAB=NMAB
11 8 9 10 syl2an UNrmCVecAXBXNMAB=NMAB
12 11 3impb UNrmCVecAXBXNMAB=NMAB
13 7 12 eqtrd UNrmCVecAXBXDAB=NMAB
14 df-ov ADB=DAB
15 df-ov AMB=MAB
16 15 fveq2i NAMB=NMAB
17 13 14 16 3eqtr4g UNrmCVecAXBXADB=NAMB