Metamath Proof Explorer


Theorem inaprc

Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion inaprc InaccV

Proof

Step Hyp Ref Expression
1 inawina xInaccxInacc𝑤
2 winaon xInacc𝑤xOn
3 1 2 syl xInaccxOn
4 3 ssriv InaccOn
5 ssorduni InaccOnOrdInacc
6 ordsson OrdInaccInaccOn
7 4 5 6 mp2b InaccOn
8 vex yV
9 grothtsk Tarski=V
10 8 9 eleqtrri yTarski
11 eluni2 yTarskiwTarskiyw
12 10 11 mpbi wTarskiyw
13 ne0i yww
14 tskcard wTarskiwcardwInacc
15 13 14 sylan2 wTarskiywcardwInacc
16 tsksdom wTarskiywyw
17 16 adantl yOnwTarskiywyw
18 tskwe2 wTarskiwdomcard
19 18 adantr wTarskiywwdomcard
20 cardsdomel yOnwdomcardywycardw
21 19 20 sylan2 yOnwTarskiywywycardw
22 17 21 mpbid yOnwTarskiywycardw
23 eleq2 z=cardwyzycardw
24 23 rspcev cardwInaccycardwzInaccyz
25 15 22 24 syl2an2 yOnwTarskiywzInaccyz
26 25 rexlimdvaa yOnwTarskiywzInaccyz
27 12 26 mpi yOnzInaccyz
28 eluni2 yInacczInaccyz
29 27 28 sylibr yOnyInacc
30 29 ssriv OnInacc
31 7 30 eqssi Inacc=On
32 ssonprc InaccOnInaccVInacc=On
33 4 32 ax-mp InaccVInacc=On
34 31 33 mpbir InaccV