Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | inaprc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inawina | |
|
2 | winaon | |
|
3 | 1 2 | syl | |
4 | 3 | ssriv | |
5 | ssorduni | |
|
6 | ordsson | |
|
7 | 4 5 6 | mp2b | |
8 | vex | |
|
9 | grothtsk | |
|
10 | 8 9 | eleqtrri | |
11 | eluni2 | |
|
12 | 10 11 | mpbi | |
13 | ne0i | |
|
14 | tskcard | |
|
15 | 13 14 | sylan2 | |
16 | tsksdom | |
|
17 | 16 | adantl | |
18 | tskwe2 | |
|
19 | 18 | adantr | |
20 | cardsdomel | |
|
21 | 19 20 | sylan2 | |
22 | 17 21 | mpbid | |
23 | eleq2 | |
|
24 | 23 | rspcev | |
25 | 15 22 24 | syl2an2 | |
26 | 25 | rexlimdvaa | |
27 | 12 26 | mpi | |
28 | eluni2 | |
|
29 | 27 28 | sylibr | |
30 | 29 | ssriv | |
31 | 7 30 | eqssi | |
32 | ssonprc | |
|
33 | 4 32 | ax-mp | |
34 | 31 33 | mpbir | |