Metamath Proof Explorer


Theorem incat

Description: Constructing a category with at most one object and at most two morphisms. If X is a set then C is the category A in Exercise 3G of Adamek p. 45. (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypotheses incat.c C = Base ndx X Hom ndx X X H comp ndx X X X · ˙
incat.h H = F G
incat.x · ˙ = f H , g H f g
Assertion incat F G G V C Cat Id C = y X G

Proof

Step Hyp Ref Expression
1 incat.c C = Base ndx X Hom ndx X X H comp ndx X X X · ˙
2 incat.h H = F G
3 incat.x · ˙ = f H , g H f g
4 snex X V
5 1 4 catbas X = Base C
6 5 a1i F G G V X = Base C
7 snex X X H V
8 1 7 cathomfval X X H = Hom C
9 8 a1i F G G V X X H = Hom C
10 snex X X X · ˙ V
11 1 10 catcofval X X X · ˙ = comp C
12 11 a1i F G G V X X X · ˙ = comp C
13 prex F G V
14 2 13 eqeltri H V
15 14 ovsn2 X X X H X = H
16 15 2 eqtri X X X H X = F G
17 14 14 mpoex f H , g H f g V
18 3 17 eqeltri · ˙ V
19 18 ovsn2 X X X X X · ˙ X = · ˙
20 19 3 eqtri X X X X X · ˙ X = f H , g H f g
21 20 a1i F G G V X X X X X · ˙ X = f H , g H f g
22 ineq12 f = G g = G f g = G G
23 inidm G G = G
24 22 23 eqtrdi f = G g = G f g = G
25 24 adantl F G G V f = G g = G f g = G
26 prid2g G V G F G
27 26 2 eleqtrrdi G V G H
28 27 adantl F G G V G H
29 21 25 28 28 28 ovmpod F G G V G X X X X X · ˙ X G = G
30 ineq12 f = G g = F f g = G F
31 sseqin2 F G G F = F
32 31 biimpi F G G F = F
33 32 adantr F G G V G F = F
34 30 33 sylan9eqr F G G V f = G g = F f g = F
35 ssexg F G G V F V
36 prid1g F V F F G
37 35 36 syl F G G V F F G
38 37 2 eleqtrrdi F G G V F H
39 21 34 28 38 38 ovmpod F G G V G X X X X X · ˙ X F = F
40 ineq12 f = F g = G f g = F G
41 dfss2 F G F G = F
42 41 biimpi F G F G = F
43 42 adantr F G G V F G = F
44 40 43 sylan9eqr F G G V f = F g = G f g = F
45 21 44 38 28 38 ovmpod F G G V F X X X X X · ˙ X G = F
46 ineq12 f = F g = F f g = F F
47 inidm F F = F
48 46 47 eqtrdi f = F g = F f g = F
49 48 adantl F G G V f = F g = F f g = F
50 21 49 38 38 38 ovmpod F G G V F X X X X X · ˙ X F = F
51 50 37 eqeltrd F G G V F X X X X X · ˙ X F F G
52 6 9 12 16 29 39 45 51 2arwcat F G G V C Cat Id C = y X G