| Step |
Hyp |
Ref |
Expression |
| 1 |
|
incsmflem.x |
|
| 2 |
|
incsmflem.y |
|
| 3 |
|
incsmflem.a |
|
| 4 |
|
incsmflem.f |
|
| 5 |
|
incsmflem.i |
|
| 6 |
|
incsmflem.j |
|
| 7 |
|
incsmflem.b |
|
| 8 |
|
incsmflem.r |
|
| 9 |
|
incsmflem.l |
|
| 10 |
|
incsmflem.c |
|
| 11 |
|
incsmflem.d |
|
| 12 |
|
incsmflem.e |
|
| 13 |
|
mnfxr |
|
| 14 |
13
|
a1i |
|
| 15 |
|
ssrab2 |
|
| 16 |
9 15
|
eqsstri |
|
| 17 |
16
|
a1i |
|
| 18 |
17 3
|
sstrd |
|
| 19 |
18
|
sselda |
|
| 20 |
14 19 6 7
|
iocborel |
|
| 21 |
12 20
|
eqeltrid |
|
| 22 |
|
nfcv |
|
| 23 |
|
nfrab1 |
|
| 24 |
9 23
|
nfcxfr |
|
| 25 |
22 24
|
nfel |
|
| 26 |
1 25
|
nfan |
|
| 27 |
|
nfv |
|
| 28 |
2 27
|
nfan |
|
| 29 |
3
|
adantr |
|
| 30 |
4
|
adantr |
|
| 31 |
5
|
adantr |
|
| 32 |
8
|
adantr |
|
| 33 |
|
simpr |
|
| 34 |
26 28 29 30 31 32 9 10 33 12
|
pimincfltioc |
|
| 35 |
|
ineq1 |
|
| 36 |
35
|
rspceeqv |
|
| 37 |
21 34 36
|
syl2anc |
|
| 38 |
6 7
|
iooborel |
|
| 39 |
11 38
|
eqeltri |
|
| 40 |
39
|
a1i |
|
| 41 |
40
|
adantr |
|
| 42 |
25
|
nfn |
|
| 43 |
1 42
|
nfan |
|
| 44 |
|
nfv |
|
| 45 |
2 44
|
nfan |
|
| 46 |
3
|
adantr |
|
| 47 |
4
|
adantr |
|
| 48 |
5
|
adantr |
|
| 49 |
8
|
adantr |
|
| 50 |
|
simpr |
|
| 51 |
43 45 46 47 48 49 9 10 50 11
|
pimincfltioo |
|
| 52 |
|
ineq1 |
|
| 53 |
52
|
rspceeqv |
|
| 54 |
41 51 53
|
syl2anc |
|
| 55 |
37 54
|
pm2.61dan |
|