Step |
Hyp |
Ref |
Expression |
1 |
|
incsmflem.x |
|
2 |
|
incsmflem.y |
|
3 |
|
incsmflem.a |
|
4 |
|
incsmflem.f |
|
5 |
|
incsmflem.i |
|
6 |
|
incsmflem.j |
|
7 |
|
incsmflem.b |
|
8 |
|
incsmflem.r |
|
9 |
|
incsmflem.l |
|
10 |
|
incsmflem.c |
|
11 |
|
incsmflem.d |
|
12 |
|
incsmflem.e |
|
13 |
|
mnfxr |
|
14 |
13
|
a1i |
|
15 |
|
ssrab2 |
|
16 |
9 15
|
eqsstri |
|
17 |
16
|
a1i |
|
18 |
17 3
|
sstrd |
|
19 |
18
|
sselda |
|
20 |
14 19 6 7
|
iocborel |
|
21 |
12 20
|
eqeltrid |
|
22 |
|
nfcv |
|
23 |
|
nfrab1 |
|
24 |
9 23
|
nfcxfr |
|
25 |
22 24
|
nfel |
|
26 |
1 25
|
nfan |
|
27 |
|
nfv |
|
28 |
2 27
|
nfan |
|
29 |
3
|
adantr |
|
30 |
4
|
adantr |
|
31 |
5
|
adantr |
|
32 |
8
|
adantr |
|
33 |
|
simpr |
|
34 |
26 28 29 30 31 32 9 10 33 12
|
pimincfltioc |
|
35 |
|
ineq1 |
|
36 |
35
|
rspceeqv |
|
37 |
21 34 36
|
syl2anc |
|
38 |
6 7
|
iooborel |
|
39 |
11 38
|
eqeltri |
|
40 |
39
|
a1i |
|
41 |
40
|
adantr |
|
42 |
25
|
nfn |
|
43 |
1 42
|
nfan |
|
44 |
|
nfv |
|
45 |
2 44
|
nfan |
|
46 |
3
|
adantr |
|
47 |
4
|
adantr |
|
48 |
5
|
adantr |
|
49 |
8
|
adantr |
|
50 |
|
simpr |
|
51 |
43 45 46 47 48 49 9 10 50 11
|
pimincfltioo |
|
52 |
|
ineq1 |
|
53 |
52
|
rspceeqv |
|
54 |
41 51 53
|
syl2anc |
|
55 |
37 54
|
pm2.61dan |
|