Metamath Proof Explorer


Theorem indistgp

Description: Any group equipped with the indiscrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses distgp.1 B=BaseG
distgp.2 J=TopOpenG
Assertion indistgp GGrpJ=BGTopGrp

Proof

Step Hyp Ref Expression
1 distgp.1 B=BaseG
2 distgp.2 J=TopOpenG
3 simpl GGrpJ=BGGrp
4 simpr GGrpJ=BJ=B
5 1 fvexi BV
6 indistopon BVBTopOnB
7 5 6 ax-mp BTopOnB
8 4 7 eqeltrdi GGrpJ=BJTopOnB
9 1 2 istps GTopSpJTopOnB
10 8 9 sylibr GGrpJ=BGTopSp
11 eqid -G=-G
12 1 11 grpsubf GGrp-G:B×BB
13 12 adantr GGrpJ=B-G:B×BB
14 5 5 xpex B×BV
15 5 14 elmap -GBB×B-G:B×BB
16 13 15 sylibr GGrpJ=B-GBB×B
17 4 oveq2d GGrpJ=BJ×tJCnJ=J×tJCnB
18 txtopon JTopOnBJTopOnBJ×tJTopOnB×B
19 8 8 18 syl2anc GGrpJ=BJ×tJTopOnB×B
20 cnindis J×tJTopOnB×BBVJ×tJCnB=BB×B
21 19 5 20 sylancl GGrpJ=BJ×tJCnB=BB×B
22 17 21 eqtrd GGrpJ=BJ×tJCnJ=BB×B
23 16 22 eleqtrrd GGrpJ=B-GJ×tJCnJ
24 2 11 istgp2 GTopGrpGGrpGTopSp-GJ×tJCnJ
25 3 10 23 24 syl3anbrc GGrpJ=BGTopGrp