Description: Any group equipped with the indiscrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | distgp.1 | |
|
distgp.2 | |
||
Assertion | indistgp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distgp.1 | |
|
2 | distgp.2 | |
|
3 | simpl | |
|
4 | simpr | |
|
5 | 1 | fvexi | |
6 | indistopon | |
|
7 | 5 6 | ax-mp | |
8 | 4 7 | eqeltrdi | |
9 | 1 2 | istps | |
10 | 8 9 | sylibr | |
11 | eqid | |
|
12 | 1 11 | grpsubf | |
13 | 12 | adantr | |
14 | 5 5 | xpex | |
15 | 5 14 | elmap | |
16 | 13 15 | sylibr | |
17 | 4 | oveq2d | |
18 | txtopon | |
|
19 | 8 8 18 | syl2anc | |
20 | cnindis | |
|
21 | 19 5 20 | sylancl | |
22 | 17 21 | eqtrd | |
23 | 16 22 | eleqtrrd | |
24 | 2 11 | istgp2 | |
25 | 3 10 23 24 | syl3anbrc | |