Metamath Proof Explorer


Theorem indlcim

Description: An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Hypotheses indlcim.f F=RfreeLModI
indlcim.b B=BaseF
indlcim.c C=BaseT
indlcim.v ·˙=T
indlcim.n N=LSpanT
indlcim.e E=xBTx·˙fA
indlcim.t φTLMod
indlcim.i φIX
indlcim.r φR=ScalarT
indlcim.a φA:IontoJ
indlcim.l φALIndFT
indlcim.s φNJ=C
Assertion indlcim φEFLMIsoT

Proof

Step Hyp Ref Expression
1 indlcim.f F=RfreeLModI
2 indlcim.b B=BaseF
3 indlcim.c C=BaseT
4 indlcim.v ·˙=T
5 indlcim.n N=LSpanT
6 indlcim.e E=xBTx·˙fA
7 indlcim.t φTLMod
8 indlcim.i φIX
9 indlcim.r φR=ScalarT
10 indlcim.a φA:IontoJ
11 indlcim.l φALIndFT
12 indlcim.s φNJ=C
13 fofn A:IontoJAFnI
14 10 13 syl φAFnI
15 3 lindff ALIndFTTLModA:domAC
16 11 7 15 syl2anc φA:domAC
17 16 frnd φranAC
18 df-f A:ICAFnIranAC
19 14 17 18 sylanbrc φA:IC
20 1 2 3 4 6 7 8 9 19 frlmup1 φEFLMHomT
21 1 2 3 4 6 7 8 9 19 islindf5 φALIndFTE:B1-1C
22 11 21 mpbid φE:B1-1C
23 1 2 3 4 6 7 8 9 19 5 frlmup3 φranE=NranA
24 forn A:IontoJranA=J
25 10 24 syl φranA=J
26 25 fveq2d φNranA=NJ
27 23 26 12 3eqtrd φranE=C
28 dff1o5 E:B1-1 ontoCE:B1-1CranE=C
29 22 27 28 sylanbrc φE:B1-1 ontoC
30 2 3 islmim EFLMIsoTEFLMHomTE:B1-1 ontoC
31 20 29 30 sylanbrc φEFLMIsoT