Description: An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | indlcim.f | |
|
indlcim.b | |
||
indlcim.c | |
||
indlcim.v | |
||
indlcim.n | |
||
indlcim.e | |
||
indlcim.t | |
||
indlcim.i | |
||
indlcim.r | |
||
indlcim.a | |
||
indlcim.l | |
||
indlcim.s | |
||
Assertion | indlcim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indlcim.f | |
|
2 | indlcim.b | |
|
3 | indlcim.c | |
|
4 | indlcim.v | |
|
5 | indlcim.n | |
|
6 | indlcim.e | |
|
7 | indlcim.t | |
|
8 | indlcim.i | |
|
9 | indlcim.r | |
|
10 | indlcim.a | |
|
11 | indlcim.l | |
|
12 | indlcim.s | |
|
13 | fofn | |
|
14 | 10 13 | syl | |
15 | 3 | lindff | |
16 | 11 7 15 | syl2anc | |
17 | 16 | frnd | |
18 | df-f | |
|
19 | 14 17 18 | sylanbrc | |
20 | 1 2 3 4 6 7 8 9 19 | frlmup1 | |
21 | 1 2 3 4 6 7 8 9 19 | islindf5 | |
22 | 11 21 | mpbid | |
23 | 1 2 3 4 6 7 8 9 19 5 | frlmup3 | |
24 | forn | |
|
25 | 10 24 | syl | |
26 | 25 | fveq2d | |
27 | 23 26 12 | 3eqtrd | |
28 | dff1o5 | |
|
29 | 22 27 28 | sylanbrc | |
30 | 2 3 | islmim | |
31 | 20 29 30 | sylanbrc | |