Metamath Proof Explorer


Theorem infcvgaux2i

Description: Auxiliary theorem for applications of supcvg . (Contributed by NM, 4-Mar-2008)

Ref Expression
Hypotheses infcvg.1 R=x|yXx=A
infcvg.2 yXA
infcvg.3 ZX
infcvg.4 zwRwz
infcvg.5a S=supR<
infcvg.13 y=CA=B
Assertion infcvgaux2i CXSB

Proof

Step Hyp Ref Expression
1 infcvg.1 R=x|yXx=A
2 infcvg.2 yXA
3 infcvg.3 ZX
4 infcvg.4 zwRwz
5 infcvg.5a S=supR<
6 infcvg.13 y=CA=B
7 eqid B=B
8 6 negeqd y=CA=B
9 8 rspceeqv CXB=ByXB=A
10 7 9 mpan2 CXyXB=A
11 negex BV
12 eqeq1 x=Bx=AB=A
13 12 rexbidv x=ByXx=AyXB=A
14 11 13 1 elab2 BRyXB=A
15 10 14 sylibr CXBR
16 1 2 3 4 infcvgaux1i RRzwRwz
17 16 suprubii BRBsupR<
18 15 17 syl CXBsupR<
19 6 eleq1d y=CAB
20 19 2 vtoclga CXB
21 16 suprclii supR<
22 lenegcon1 BsupR<BsupR<supR<B
23 20 21 22 sylancl CXBsupR<supR<B
24 18 23 mpbid CXsupR<B
25 5 24 eqbrtrid CXSB