Description: Auxiliary theorem for applications of supcvg . (Contributed by NM, 4-Mar-2008)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infcvg.1 | |
|
infcvg.2 | |
||
infcvg.3 | |
||
infcvg.4 | |
||
infcvg.5a | |
||
infcvg.13 | |
||
Assertion | infcvgaux2i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcvg.1 | |
|
2 | infcvg.2 | |
|
3 | infcvg.3 | |
|
4 | infcvg.4 | |
|
5 | infcvg.5a | |
|
6 | infcvg.13 | |
|
7 | eqid | |
|
8 | 6 | negeqd | |
9 | 8 | rspceeqv | |
10 | 7 9 | mpan2 | |
11 | negex | |
|
12 | eqeq1 | |
|
13 | 12 | rexbidv | |
14 | 11 13 1 | elab2 | |
15 | 10 14 | sylibr | |
16 | 1 2 3 4 | infcvgaux1i | |
17 | 16 | suprubii | |
18 | 15 17 | syl | |
19 | 6 | eleq1d | |
20 | 19 2 | vtoclga | |
21 | 16 | suprclii | |
22 | lenegcon1 | |
|
23 | 20 21 22 | sylancl | |
24 | 18 23 | mpbid | |
25 | 5 24 | eqbrtrid | |