Description: Any infinite ordinal is equinumerous to its successor. Exercise 7 of TakeutiZaring p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003) (Revised by Mario Carneiro, 13-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | infensuc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onprc | |
|
2 | eleq1 | |
|
3 | 1 2 | mtbiri | |
4 | ssexg | |
|
5 | 4 | ancoms | |
6 | 3 5 | nsyl3 | |
7 | omon | |
|
8 | 7 | ori | |
9 | 6 8 | nsyl2 | |
10 | id | |
|
11 | suceq | |
|
12 | 10 11 | breq12d | |
13 | id | |
|
14 | suceq | |
|
15 | 13 14 | breq12d | |
16 | id | |
|
17 | suceq | |
|
18 | 16 17 | breq12d | |
19 | id | |
|
20 | suceq | |
|
21 | 19 20 | breq12d | |
22 | limom | |
|
23 | 22 | limensuci | |
24 | vex | |
|
25 | 24 | sucex | |
26 | en2sn | |
|
27 | 24 25 26 | mp2an | |
28 | eloni | |
|
29 | ordirr | |
|
30 | 28 29 | syl | |
31 | disjsn | |
|
32 | 30 31 | sylibr | |
33 | eloni | |
|
34 | ordirr | |
|
35 | 33 34 | syl | |
36 | onsucb | |
|
37 | disjsn | |
|
38 | 35 36 37 | 3imtr4i | |
39 | 32 38 | jca | |
40 | unen | |
|
41 | df-suc | |
|
42 | df-suc | |
|
43 | 40 41 42 | 3brtr4g | |
44 | 43 | ex | |
45 | 39 44 | syl5 | |
46 | 27 45 | mpan2 | |
47 | 46 | com12 | |
48 | 47 | ad2antrr | |
49 | vex | |
|
50 | limensuc | |
|
51 | 49 50 | mpan | |
52 | 51 | ad2antrr | |
53 | 52 | a1d | |
54 | 12 15 18 21 23 48 53 | tfindsg | |
55 | 54 | exp31 | |
56 | 55 | com23 | |
57 | 56 | imp | |
58 | 9 57 | mpd | |