Description: The infimum of an indexed set of extended reals is greater than or equal to a lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infxrgelbrnmpt.x | |
|
infxrgelbrnmpt.b | |
||
infxrgelbrnmpt.c | |
||
Assertion | infxrgelbrnmpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxrgelbrnmpt.x | |
|
2 | infxrgelbrnmpt.b | |
|
3 | infxrgelbrnmpt.c | |
|
4 | eqid | |
|
5 | 1 4 2 | rnmptssd | |
6 | infxrgelb | |
|
7 | 5 3 6 | syl2anc | |
8 | nfmpt1 | |
|
9 | 8 | nfrn | |
10 | nfv | |
|
11 | 9 10 | nfralw | |
12 | 1 11 | nfan | |
13 | simpr | |
|
14 | 4 | elrnmpt1 | |
15 | 13 2 14 | syl2anc | |
16 | 15 | adantlr | |
17 | simplr | |
|
18 | breq2 | |
|
19 | 18 | rspcva | |
20 | 16 17 19 | syl2anc | |
21 | 20 | ex | |
22 | 12 21 | ralrimi | |
23 | vex | |
|
24 | 4 | elrnmpt | |
25 | 23 24 | ax-mp | |
26 | 25 | biimpi | |
27 | 26 | adantl | |
28 | nfra1 | |
|
29 | rspa | |
|
30 | 18 | biimprcd | |
31 | 29 30 | syl | |
32 | 31 | ex | |
33 | 28 10 32 | rexlimd | |
34 | 33 | adantr | |
35 | 27 34 | mpd | |
36 | 35 | ralrimiva | |
37 | 36 | adantl | |
38 | 22 37 | impbida | |
39 | 7 38 | bitrd | |