Metamath Proof Explorer


Theorem initoeu2lem0

Description: Lemma 0 for initoeu2 . (Contributed by AV, 9-Apr-2020)

Ref Expression
Hypotheses initoeu1.c φ C Cat
initoeu1.a φ A InitO C
initoeu2lem.x X = Base C
initoeu2lem.h H = Hom C
initoeu2lem.i I = Iso C
initoeu2lem.o No typesetting found for |- .o. = ( comp ` C ) with typecode |-
Assertion initoeu2lem0 Could not format assertion : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 initoeu1.c φ C Cat
2 initoeu1.a φ A InitO C
3 initoeu2lem.x X = Base C
4 initoeu2lem.h H = Hom C
5 initoeu2lem.i I = Iso C
6 initoeu2lem.o Could not format .o. = ( comp ` C ) : No typesetting found for |- .o. = ( comp ` C ) with typecode |-
7 3simpa Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) ) with typecode |-
8 simp3 Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) with typecode |-
9 8 eqcomd Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) with typecode |-
10 eqid Inv C = Inv C
11 1 adantr φ A X B X D X C Cat
12 11 adantr φ A X B X D X K B I A F A H D G B H D C Cat
13 simpr1 φ A X B X D X A X
14 13 adantr φ A X B X D X K B I A F A H D G B H D A X
15 simpr2 φ A X B X D X B X
16 15 adantr φ A X B X D X K B I A F A H D G B H D B X
17 simplr3 φ A X B X D X K B I A F A H D G B H D D X
18 5 oveqi B I A = B Iso C A
19 18 eleq2i K B I A K B Iso C A
20 19 biimpi K B I A K B Iso C A
21 20 3ad2ant1 K B I A F A H D G B H D K B Iso C A
22 21 adantl φ A X B X D X K B I A F A H D G B H D K B Iso C A
23 4 oveqi B H D = B Hom C D
24 23 eleq2i G B H D G B Hom C D
25 24 biimpi G B H D G B Hom C D
26 25 3ad2ant3 K B I A F A H D G B H D G B Hom C D
27 26 adantl φ A X B X D X K B I A F A H D G B H D G B Hom C D
28 eqid Hom C = Hom C
29 3 28 5 11 15 13 isohom φ A X B X D X B I A B Hom C A
30 29 sseld φ A X B X D X K B I A K B Hom C A
31 30 com12 K B I A φ A X B X D X K B Hom C A
32 31 3ad2ant1 K B I A F A H D G B H D φ A X B X D X K B Hom C A
33 32 impcom φ A X B X D X K B I A F A H D G B H D K B Hom C A
34 4 oveqi A H D = A Hom C D
35 34 eleq2i F A H D F A Hom C D
36 35 biimpi F A H D F A Hom C D
37 36 3ad2ant2 K B I A F A H D G B H D F A Hom C D
38 37 adantl φ A X B X D X K B I A F A H D G B H D F A Hom C D
39 3 28 6 12 16 14 17 33 38 catcocl Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( F ( <. B , A >. .o. D ) K ) e. ( B ( Hom ` C ) D ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( F ( <. B , A >. .o. D ) K ) e. ( B ( Hom ` C ) D ) ) with typecode |-
40 eqid B Inv C A K = B Inv C A K
41 6 oveqi Could not format ( <. A , B >. .o. D ) = ( <. A , B >. ( comp ` C ) D ) : No typesetting found for |- ( <. A , B >. .o. D ) = ( <. A , B >. ( comp ` C ) D ) with typecode |-
42 3 10 12 14 16 17 22 27 39 40 41 rcaninv Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) ) with typecode |-
43 7 9 42 sylc Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) with typecode |-