Metamath Proof Explorer


Theorem initoeu2lem0

Description: Lemma 0 for initoeu2 . (Contributed by AV, 9-Apr-2020)

Ref Expression
Hypotheses initoeu1.c φCCat
initoeu1.a φAInitOC
initoeu2lem.x X=BaseC
initoeu2lem.h H=HomC
initoeu2lem.i I=IsoC
initoeu2lem.o No typesetting found for |- .o. = ( comp ` C ) with typecode |-
Assertion initoeu2lem0 Could not format assertion : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 initoeu1.c φCCat
2 initoeu1.a φAInitOC
3 initoeu2lem.x X=BaseC
4 initoeu2lem.h H=HomC
5 initoeu2lem.i I=IsoC
6 initoeu2lem.o Could not format .o. = ( comp ` C ) : No typesetting found for |- .o. = ( comp ` C ) with typecode |-
7 3simpa Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) ) with typecode |-
8 simp3 Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) with typecode |-
9 8 eqcomd Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) with typecode |-
10 eqid InvC=InvC
11 1 adantr φAXBXDXCCat
12 11 adantr φAXBXDXKBIAFAHDGBHDCCat
13 simpr1 φAXBXDXAX
14 13 adantr φAXBXDXKBIAFAHDGBHDAX
15 simpr2 φAXBXDXBX
16 15 adantr φAXBXDXKBIAFAHDGBHDBX
17 simplr3 φAXBXDXKBIAFAHDGBHDDX
18 5 oveqi BIA=BIsoCA
19 18 eleq2i KBIAKBIsoCA
20 19 biimpi KBIAKBIsoCA
21 20 3ad2ant1 KBIAFAHDGBHDKBIsoCA
22 21 adantl φAXBXDXKBIAFAHDGBHDKBIsoCA
23 4 oveqi BHD=BHomCD
24 23 eleq2i GBHDGBHomCD
25 24 biimpi GBHDGBHomCD
26 25 3ad2ant3 KBIAFAHDGBHDGBHomCD
27 26 adantl φAXBXDXKBIAFAHDGBHDGBHomCD
28 eqid HomC=HomC
29 3 28 5 11 15 13 isohom φAXBXDXBIABHomCA
30 29 sseld φAXBXDXKBIAKBHomCA
31 30 com12 KBIAφAXBXDXKBHomCA
32 31 3ad2ant1 KBIAFAHDGBHDφAXBXDXKBHomCA
33 32 impcom φAXBXDXKBIAFAHDGBHDKBHomCA
34 4 oveqi AHD=AHomCD
35 34 eleq2i FAHDFAHomCD
36 35 biimpi FAHDFAHomCD
37 36 3ad2ant2 KBIAFAHDGBHDFAHomCD
38 37 adantl φAXBXDXKBIAFAHDGBHDFAHomCD
39 3 28 6 12 16 14 17 33 38 catcocl Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( F ( <. B , A >. .o. D ) K ) e. ( B ( Hom ` C ) D ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( F ( <. B , A >. .o. D ) K ) e. ( B ( Hom ` C ) D ) ) with typecode |-
40 eqid BInvCAK=BInvCAK
41 6 oveqi Could not format ( <. A , B >. .o. D ) = ( <. A , B >. ( comp ` C ) D ) : No typesetting found for |- ( <. A , B >. .o. D ) = ( <. A , B >. ( comp ` C ) D ) with typecode |-
42 3 10 12 14 16 17 22 27 39 40 41 rcaninv Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) ) with typecode |-
43 7 9 42 sylc Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) with typecode |-