Step |
Hyp |
Ref |
Expression |
1 |
|
initoeu1.c |
|
2 |
|
initoeu1.a |
|
3 |
|
initoeu2lem.x |
|
4 |
|
initoeu2lem.h |
|
5 |
|
initoeu2lem.i |
|
6 |
|
initoeu2lem.o |
Could not format .o. = ( comp ` C ) : No typesetting found for |- .o. = ( comp ` C ) with typecode |- |
7 |
|
3simpa |
Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) ) with typecode |- |
8 |
|
simp3 |
Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) with typecode |- |
9 |
8
|
eqcomd |
Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) with typecode |- |
10 |
|
eqid |
|
11 |
1
|
adantr |
|
12 |
11
|
adantr |
|
13 |
|
simpr1 |
|
14 |
13
|
adantr |
|
15 |
|
simpr2 |
|
16 |
15
|
adantr |
|
17 |
|
simplr3 |
|
18 |
5
|
oveqi |
|
19 |
18
|
eleq2i |
|
20 |
19
|
biimpi |
|
21 |
20
|
3ad2ant1 |
|
22 |
21
|
adantl |
|
23 |
4
|
oveqi |
|
24 |
23
|
eleq2i |
|
25 |
24
|
biimpi |
|
26 |
25
|
3ad2ant3 |
|
27 |
26
|
adantl |
|
28 |
|
eqid |
|
29 |
3 28 5 11 15 13
|
isohom |
|
30 |
29
|
sseld |
|
31 |
30
|
com12 |
|
32 |
31
|
3ad2ant1 |
|
33 |
32
|
impcom |
|
34 |
4
|
oveqi |
|
35 |
34
|
eleq2i |
|
36 |
35
|
biimpi |
|
37 |
36
|
3ad2ant2 |
|
38 |
37
|
adantl |
|
39 |
3 28 6 12 16 14 17 33 38
|
catcocl |
Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( F ( <. B , A >. .o. D ) K ) e. ( B ( Hom ` C ) D ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( F ( <. B , A >. .o. D ) K ) e. ( B ( Hom ` C ) D ) ) with typecode |- |
40 |
|
eqid |
|
41 |
6
|
oveqi |
Could not format ( <. A , B >. .o. D ) = ( <. A , B >. ( comp ` C ) D ) : No typesetting found for |- ( <. A , B >. .o. D ) = ( <. A , B >. ( comp ` C ) D ) with typecode |- |
42 |
3 10 12 14 16 17 22 27 39 40 41
|
rcaninv |
Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) ) with typecode |- |
43 |
7 9 42
|
sylc |
Could not format ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) : No typesetting found for |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) with typecode |- |