Metamath Proof Explorer


Theorem ipassr

Description: "Associative" law for second argument of inner product (compare ipass ). (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ipdir.f K=BaseF
ipass.s ·˙=W
ipass.p ×˙=F
ipassr.i ˙=*F
Assertion ipassr WPreHilAVBVCKA,˙C·˙B=A,˙B×˙˙C

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ipdir.f K=BaseF
5 ipass.s ·˙=W
6 ipass.p ×˙=F
7 ipassr.i ˙=*F
8 simpl WPreHilAVBVCKWPreHil
9 simpr3 WPreHilAVBVCKCK
10 simpr2 WPreHilAVBVCKBV
11 simpr1 WPreHilAVBVCKAV
12 1 2 3 4 5 6 ipass WPreHilCKBVAVC·˙B,˙A=C×˙B,˙A
13 8 9 10 11 12 syl13anc WPreHilAVBVCKC·˙B,˙A=C×˙B,˙A
14 13 fveq2d WPreHilAVBVCK˙C·˙B,˙A=˙C×˙B,˙A
15 phllmod WPreHilWLMod
16 15 adantr WPreHilAVBVCKWLMod
17 3 1 5 4 lmodvscl WLModCKBVC·˙BV
18 16 9 10 17 syl3anc WPreHilAVBVCKC·˙BV
19 1 2 3 7 ipcj WPreHilC·˙BVAV˙C·˙B,˙A=A,˙C·˙B
20 8 18 11 19 syl3anc WPreHilAVBVCK˙C·˙B,˙A=A,˙C·˙B
21 1 phlsrng WPreHilF*-Ring
22 21 adantr WPreHilAVBVCKF*-Ring
23 1 2 3 4 ipcl WPreHilBVAVB,˙AK
24 8 10 11 23 syl3anc WPreHilAVBVCKB,˙AK
25 7 4 6 srngmul F*-RingCKB,˙AK˙C×˙B,˙A=˙B,˙A×˙˙C
26 22 9 24 25 syl3anc WPreHilAVBVCK˙C×˙B,˙A=˙B,˙A×˙˙C
27 14 20 26 3eqtr3d WPreHilAVBVCKA,˙C·˙B=˙B,˙A×˙˙C
28 1 2 3 7 ipcj WPreHilBVAV˙B,˙A=A,˙B
29 8 10 11 28 syl3anc WPreHilAVBVCK˙B,˙A=A,˙B
30 29 oveq1d WPreHilAVBVCK˙B,˙A×˙˙C=A,˙B×˙˙C
31 27 30 eqtrd WPreHilAVBVCKA,˙C·˙B=A,˙B×˙˙C