Description: "Associative" law for second argument of inner product (compare ipass ). (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | phlsrng.f | |
|
phllmhm.h | |
||
phllmhm.v | |
||
ipdir.f | |
||
ipass.s | |
||
ipass.p | |
||
ipassr.i | |
||
Assertion | ipassr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | |
|
2 | phllmhm.h | |
|
3 | phllmhm.v | |
|
4 | ipdir.f | |
|
5 | ipass.s | |
|
6 | ipass.p | |
|
7 | ipassr.i | |
|
8 | simpl | |
|
9 | simpr3 | |
|
10 | simpr2 | |
|
11 | simpr1 | |
|
12 | 1 2 3 4 5 6 | ipass | |
13 | 8 9 10 11 12 | syl13anc | |
14 | 13 | fveq2d | |
15 | phllmod | |
|
16 | 15 | adantr | |
17 | 3 1 5 4 | lmodvscl | |
18 | 16 9 10 17 | syl3anc | |
19 | 1 2 3 7 | ipcj | |
20 | 8 18 11 19 | syl3anc | |
21 | 1 | phlsrng | |
22 | 21 | adantr | |
23 | 1 2 3 4 | ipcl | |
24 | 8 10 11 23 | syl3anc | |
25 | 7 4 6 | srngmul | |
26 | 22 9 24 25 | syl3anc | |
27 | 14 20 26 | 3eqtr3d | |
28 | 1 2 3 7 | ipcj | |
29 | 8 10 11 28 | syl3anc | |
30 | 29 | oveq1d | |
31 | 27 30 | eqtrd | |