Metamath Proof Explorer


Theorem ipassr

Description: "Associative" law for second argument of inner product (compare ipass ). (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F = Scalar W
phllmhm.h , ˙ = 𝑖 W
phllmhm.v V = Base W
ipdir.f K = Base F
ipass.s · ˙ = W
ipass.p × ˙ = F
ipassr.i ˙ = * F
Assertion ipassr W PreHil A V B V C K A , ˙ C · ˙ B = A , ˙ B × ˙ ˙ C

Proof

Step Hyp Ref Expression
1 phlsrng.f F = Scalar W
2 phllmhm.h , ˙ = 𝑖 W
3 phllmhm.v V = Base W
4 ipdir.f K = Base F
5 ipass.s · ˙ = W
6 ipass.p × ˙ = F
7 ipassr.i ˙ = * F
8 simpl W PreHil A V B V C K W PreHil
9 simpr3 W PreHil A V B V C K C K
10 simpr2 W PreHil A V B V C K B V
11 simpr1 W PreHil A V B V C K A V
12 1 2 3 4 5 6 ipass W PreHil C K B V A V C · ˙ B , ˙ A = C × ˙ B , ˙ A
13 8 9 10 11 12 syl13anc W PreHil A V B V C K C · ˙ B , ˙ A = C × ˙ B , ˙ A
14 13 fveq2d W PreHil A V B V C K ˙ C · ˙ B , ˙ A = ˙ C × ˙ B , ˙ A
15 phllmod W PreHil W LMod
16 15 adantr W PreHil A V B V C K W LMod
17 3 1 5 4 lmodvscl W LMod C K B V C · ˙ B V
18 16 9 10 17 syl3anc W PreHil A V B V C K C · ˙ B V
19 1 2 3 7 ipcj W PreHil C · ˙ B V A V ˙ C · ˙ B , ˙ A = A , ˙ C · ˙ B
20 8 18 11 19 syl3anc W PreHil A V B V C K ˙ C · ˙ B , ˙ A = A , ˙ C · ˙ B
21 1 phlsrng W PreHil F *-Ring
22 21 adantr W PreHil A V B V C K F *-Ring
23 1 2 3 4 ipcl W PreHil B V A V B , ˙ A K
24 8 10 11 23 syl3anc W PreHil A V B V C K B , ˙ A K
25 7 4 6 srngmul F *-Ring C K B , ˙ A K ˙ C × ˙ B , ˙ A = ˙ B , ˙ A × ˙ ˙ C
26 22 9 24 25 syl3anc W PreHil A V B V C K ˙ C × ˙ B , ˙ A = ˙ B , ˙ A × ˙ ˙ C
27 14 20 26 3eqtr3d W PreHil A V B V C K A , ˙ C · ˙ B = ˙ B , ˙ A × ˙ ˙ C
28 1 2 3 7 ipcj W PreHil B V A V ˙ B , ˙ A = A , ˙ B
29 8 10 11 28 syl3anc W PreHil A V B V C K ˙ B , ˙ A = A , ˙ B
30 29 oveq1d W PreHil A V B V C K ˙ B , ˙ A × ˙ ˙ C = A , ˙ B × ˙ ˙ C
31 27 30 eqtrd W PreHil A V B V C K A , ˙ C · ˙ B = A , ˙ B × ˙ ˙ C